Geochemical and isotopic (O-Fe-Sr-Nd) characterization of reference materials relevant to environmental impact assessments
Read Online
PDF
Data, Code, and Outputs

Supplementary Files

Supplementary Material

Keywords

sediments
marine
trace elements
heterogeneity
repeatability

How to Cite

McCoy-West, A. J., Koutamanis, D., Leduc, E. M. S., & Mahan, B. (2025). Geochemical and isotopic (O-Fe-Sr-Nd) characterization of reference materials relevant to environmental impact assessments. Advances in Geochemistry and Cosmochemistry, 1(2), 986. https://doi.org/10.33063/agc.v1i2.986

Abstract

This study presents multi-faceted characterization of riverine and marine reference materials (RM) relevant for undertaking environmental impact assessments associated with mining or anthropogenic activities. These include composite stream sediments (JSd-2, JSd-3), marine sediments (MESS-3, HISS-1), a banded iron formation (FeR-4) and a basalt (BHVO-2). Whole rock major and volatile element contents (C, H, S) contents were determined using X-ray fluorescence and an elemental analyzer, respectively. Following hotplate digestions 47 trace elements were determined via solution induction coupled plasma mass spectrometer (ICP-MS). Oxygen isotope compositions (δ18O) were measured using an isotope ratio-MS. Stable Fe (δ56Fe) and radiogenic 87Sr/86Sr and 143Nd/144Nd isotope compositions were measured using multi-collector ICP-MS. These results demonstrate that caution should be applied when selecting a sedimentary RM given some suffer from significant heterogeneity (e.g. HISS-1) across multiple parameters including volatile and trace element contents and stable and radiogenic isotope compositions. Due to the potentially diverse source components of siliciclastic sediments (i.e. inherited heterogeneity), when conducting environmental impact assessments across certain settings (e.g., riverine; estuarine; marine), a wider uncertainty window should be applied before definitively ascribing subtle differences to exogenous contamination.

https://doi.org/10.33063/agc.v1i2.986
Read Online
PDF
Data, Code, and Outputs

References

Alard, O., Halimulati, A., Gorojovsky, L., & Wieland, P. (2023). Sulfur Mass Fractions in Thirty-Seven Geological Reference Materials by Titration, XRF and Elemental Analyser. Geostandards and Geoanalytical Research, 47(2), 437–456. https://doi.org/10.1111/ggr.12473

Albut, G., Babechuk, M. G., Kleinhanns, I. C., Benger, M., Beukes, N. J., Steinhilber, B., Smith, A. J. B., Kruger, S. J., & Schoenberg, R. (2018). Modern rather than Mesoarchaean oxidative weathering responsible for the heavy stable Cr isotopic signatures of the 2.95 Ga old Ijzermijn iron formation (South Africa). Geochimica et Cosmochimica Acta, 228, 157–189. https://doi.org/10.1016/j.gca.2018.02.034

Baker, J. A., Macpherson, C. G., Menzies, M. A., Thirlwall, M. F., Al-Kadasi, M., & Mattey, D. P. (2000). Resolving Crustal and Mantle Contributions to Continental Flood Volcanism, Yemen; Constraints from Mineral Oxygen Isotope Data. Journal of Petrology, 41(12), 1805–1820. https://doi.org/10.1093/petrology/41.12.1805

Barwick, V. J. (2023). Eurachem Guide:Terminology in Analytical Measurement – Introduction to VIM 3 (V. J. Barwick, Ed.; 2nd ed.).

Bau, M., & Alexander, B. W. (2009). Distribution of high field strength elements (Y, Zr, REE, Hf, Ta, Th, U) in adjacent magnetite and chert bands and in reference standards FeR-3 and FeR-4 from the Temagami iron-formation, Canada, and the redox level of the Neoarchean ocean. Precambrian Research, 174(3–4), 337–346. https://doi.org/10.1016/j.precamres.2009.08.007

Berman, S., Boyko, V., Clancy, V., Lam, J., Maxwell, P., McLaren, J. W., Methven, B., Brophy, C., Willie, S., Yang, L., Pihillagawa Gedara, I., Grinberg, P., Kumkrong, P., Mercier, P. H. J., Mihai, O., Tyo, D. D., Jiang, C., Kingston, D. M., Mester, Z., & Sturgeon, R. (1997). HISS-1: Marine Sediment Certified Reference Material for total and extractable metal content. National Research Council of Canada.

Braukmüller, N., Wombacher, F., Bragagni, A., & Münker, C. (2020). Determination of Cu, Zn, Ga, Ag, Cd, In, Sn and Tl in Geological Reference Materials and Chondrites by Isotope Dilution ICP‐MS. Geostandards and Geoanalytical Research, 44(4), 733–752. https://doi.org/10.1111/ggr.12352

Charalampides, G., & Manoliadis, O. (2002). Sr and Pb isotopes as environmental indicators in environmental studies. Environment International, 28(3), 147–151. https://doi.org/10.1016/s0160-4120(02)00020-x

Charlier, B. L. A., Ginibre, C., Morgan, D., Nowell, G. M., Pearson, D. G., Davidson, J. P., & Ottley, C. J. (2006). Methods for the microsampling and high-precision analysis of strontium and rubidium isotopes at single crystal scale for petrological and geochronological applications. Chemical Geology, 232(3–4), 114–133. https://doi.org/10.1016/j.chemgeo.2006.02.015

Chauvel, C., Bureau, S., & Poggi, C. (2011). Comprehensive Chemical and Isotopic Analyses of Basalt and Sediment Reference Materials. Geostandards and Geoanalytical Research, 35(1), 125–143. https://doi.org/10.1111/j.1751-908x.2010.00086.x

Choi, J.-H., Ryu, J.-S., Shin, H. S., Kim, J., & Cheong, C. (2013). Reevaluation of Th and U concentrations in marine sediment reference materials using isotope dilution MC-ICP-MS: towards the analytical improvements in dose rate estimation for luminescence dating. Geosciences Journal, 17(2), 123–127. https://doi.org/10.1007/s12303-013-0023-1

Clayton, R. N., & Mayeda, T. K. (1963). The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta, 27(1), 43–52. https://doi.org/10.1016/0016-7037(63)90071-1

Craddock, P. R., & Dauphas, N. (2011). Iron Isotopic Compositions of Geological Reference Materials and Chondrites. Geostandards and Geoanalytical Research, 35(1), 101–123. https://doi.org/10.1111/j.1751-908x.2010.00085.x

Dauphas, N., Janney, P. E., Mendybaev, R. A., Wadhwa, M., Richter, F. M., Davis, A. M., van Zuilen, M., Hines, R., & Foley, C. N. (2004). Chromatographic Separation and Multicollection-ICPMS Analysis of Iron. Investigating Mass-Dependent and -Independent Isotope Effects. Analytical Chemistry, 76(19), 5855–5863. https://doi.org/10.1021/ac0497095

Dauphas, N., Pourmand, A., & Teng, F.-Z. (2009). Routine isotopic analysis of iron by HR-MC-ICPMS: How precise and how accurate? Chemical Geology, 267(3–4), 175–184. https://doi.org/10.1016/j.chemgeo.2008.12.011

D’Azeredo Orlando, M. T., Galvão, E. S., Sant’Ana Cavichini, A., Gabrig Turbay Rangel, C. V., Pinheiro Orlando, C. G., Grilo, C. F., Soares, J., Santos Oliveira, K. S., Sá, F., Junior, A. C., Bastos, A. C., & da Silva Quaresma, V. (2020). Tracing iron ore tailings in the marine environment: An investigation of the Fundão dam failure. Chemosphere, 257, 127184. https://doi.org/10.1016/j.chemosphere.2020.127184

De Muynck, D., Huelga-Suarez, G., Van Heghe, L., Degryse, P., & Vanhaecke, F. (2009). Systematic evaluation of a strontium-specific extraction chromatographic resin for obtaining a purified Sr fraction with quantitative recovery from complex and Ca-rich matrices. Journal of Analytical Atomic Spectrometry, 24(11), 1498. https://doi.org/10.1039/b908645e

Doucelance, R., Bruand, E., Matte, S., Bosq, C., Auclair, D., & Gannoun, A.-M. (2020). In-situ determination of Nd isotope ratios in apatite by LA-MC-ICPMS: Challenges and limitations. Chemical Geology, 550, 119740. https://doi.org/10.1016/j.chemgeo.2020.119740

Druce, M., Stirling, C. H., & Rolison, J. M. (2020). High‐Precision Zinc Isotopic Measurement of Certified Reference Materials Relevant to the Environmental, Earth, Planetary and Biomedical Sciences. Geostandards and Geoanalytical Research, 44(4), 711–732. https://doi.org/10.1111/ggr.12341

Dulski, P. (2001). Reference Materials for Geochemical Studies: New Analytical Data by ICP‐MS and Critical Discussion of Reference Values. Geostandards Newsletter, 25(1), 87–125. https://doi.org/10.1111/j.1751-908x.2001.tb00790.x

Eggins, S. M., Woodhead, J. D., Kinsley, L. P. J., Mortimer, G. E., Sylvester, P., McCulloch, M. T., Hergt, J. M., & Handler, M. R. (1997). A simple method for the precise determination of ≥ 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chemical Geology, 134(4), 311–326. https://doi.org/10.1016/s0009-2541(96)00100-3

Fiket, Ž., Mikac, N., & Kniewald, G. (2017). Mass Fractions of Forty‐Six Major and Trace Elements, Including Rare Earth Elements, in Sediment and Soil Reference Materials Used in Environmental Studies. Geostandards and Geoanalytical Research, 41(1), 123–135. https://doi.org/10.1111/ggr.12129

Flanagan, F. J. (1967). U.S. Geological Survey silicate rock standards. Geochimica et Cosmochimica Acta, 31(3), 289–308. https://doi.org/10.1016/0016-7037(67)90043-9

Flanagan, F. J. (1986). Reference Samples in Geology and Geochemistry. Geostandards Newsletter, 10(2), 195–264. https://doi.org/10.1111/j.1751-908x.1986.tb00828.x

Garçon, M., Sauzéat, L., Carlson, R. W., Shirey, S. B., Simon, M., Balter, V., & Boyet, M. (2017). Nitrile, Latex, Neoprene and Vinyl Gloves: A Primary Source of Contamination for Trace Element and Zn Isotopic Analyses in Geological and Biological Samples. Geostandards and Geoanalytical Research, 41(3), 367–380. https://doi.org/10.1111/ggr.12161

Gerrits, A. R., Inglis, E. C., Dragovic, B., Starr, P. G., Baxter, E. F., & Burton, K. W. (2019). Release of oxidizing fluids in subduction zones recorded by iron isotope zonation in garnet. Nature Geoscience, 12(12), 1029–1033. https://doi.org/10.1038/s41561-019-0471-y

Ghidan, O. Y., & Loss, R. D. (2010). Accurate and Precise Elemental Abundance of Zinc in Reference Materials by an Isotope Dilution Mass Spectrometry TIMS Technique. Geostandards and Geoanalytical Research, 34(2), 185–191. https://doi.org/10.1111/j.1751-908x.2010.00026.x

Govindaraju, K. (1994). 1994 compilation of working values and sample description for 383 geostandards. Geostandards Newsletter, 18(S1), 1–158. https://doi.org/10.1046/j.1365-2494.1998.53202081.x-i1

Horan, K., Hilton, R. G., McCoy-West, A. J., Selby, D., Tipper, E. T., Hawley, S., & Burton, K. W. (2020). Unravelling the controls on the molybdenum isotope ratios of river waters. Geochemical Perspectives Letters, 1–6. https://doi.org/10.7185/geochemlet.2005

Horwitz, P. E., Chiarizia, R., & Dietz, M. L. (1992). A novel strontium-selective extraction chromatographic resin. Solvent Extraction and Ion Exchange, 10(2), 313–336. https://doi.org/10.1080/07366299208918107

Hou, S., Yang, S., Sun, J., & Ding, Z. (2003). Oxygen isotope compositions of quartz grains (4–16 μm) from Chinese eolian deposits and their implications for provenance. Science in China Series D: Earth Sciences, 46(10), 1003–1011. https://doi.org/10.1007/bf02959395

Imai, N., Terashima, S., Itoh, S., & Ando, A. (1996). 1996 compilation of analytical data on nine GSJ geochemical reference samples, “Sedimentary Rock Series.” Geostandards Newsletter, 20(2), 165–216. https://doi.org/10.1111/j.1751-908x.1996.tb00184.x

Inagaki, K., Takatsu, A., Nakama, A., Eyama, S., Yarita, T., Okamoto, K., & Chiba, K. (2006). Determination of selenium in sediment by isotope-dilution inductively coupled plasma mass spectrometry with an octapole reaction cell. Analytical and Bioanalytical Chemistry, 385(1), 67–75. https://doi.org/10.1007/s00216-006-0376-7

Jaouen, K., Trost, M., Bourgon, N., Colleter, R., Le Cabec, A., Tütken, T., Elias Oliveira, R., Pons, M. L., Méjean, P., Steinbrenner, S., Chmeleff, J., & Strauss, A. (2020). Zinc isotope variations in archeological human teeth (Lapa do Santo, Brazil) reveal dietary transitions in childhood and no contamination from gloves. PLOS ONE, 15(5), e0232379. https://doi.org/10.1371/journal.pone.0232379

Jo, H. J., Lee, H. M., Kim, G.-E., Choi, W. M., & Kim, T. (2021). Determination of Sr–Nd–Pb Isotopic Ratios of Rock Reference Materials Using Column Separation Techniques and TIMS. Separations, 8(11), 213. https://doi.org/10.3390/separations8110213

Jochum, K. P., & Enzweiler, J. (2014). Reference Materials in Geochemical and Environmental Research. In Treatise on Geochemistry (pp. 43–70). Elsevier. https://doi.org/10.1016/b978-0-08-095975-7.01403-0

Jochum, K. P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., & Hofmann, A. W. (2005). GeoReM: A New Geochemical Database for Reference Materials and Isotopic Standards. Geostandards and Geoanalytical Research, 29(3), 333–338. https://doi.org/10.1111/j.1751-908x.2005.tb00904.x

Jochum, K. P., Weis, U., Schwager, B., Stoll, B., Wilson, S. A., Haug, G. H., Andreae, M. O., & Enzweiler, J. (2016). Reference Values Following ISO Guidelines for Frequently Requested Rock Reference Materials. Geostandards and Geoanalytical Research, 40(3), 333–350. https://doi.org/10.1111/j.1751-908x.2015.00392.x

Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D. E., Stracke, A., Birbaum, K., Frick, D. A., Günther, D., & Enzweiler, J. (2011). Determination of Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines. Geostandards and Geoanalytical Research, 35(4), 397–429. https://doi.org/10.1111/j.1751-908x.2011.00120.x

Kaufmann, A. K. C., & McCoy‐West, A. J. (2025). Combined Stable and Radiogenic Nd Isotope Characterisation of Sedimentary and Iron Formation Reference Materials by Double Spike MC-ICP-MS. Geostandards and Geoanalytical Research. https://doi.org/10.1111/ggr.70020

Kubota, R. (2009). Simultaneous Determination of Total Carbon, Nitrogen, Hydrogen and Sulfur in Twenty‐seven Geological Reference Materials by Elemental Analyser. Geostandards and Geoanalytical Research, 33(2), 271–283. https://doi.org/10.1111/j.1751-908x.2009.00905.x

Kumakura, S., Tanaka, M., Hashimoto, S., & Maeda, M. (2004). Determination of lanthanoides and heavy metals in Sagami Bay sediment and sediment reference material MESS-3. BUNSEKI KAGAKU, 53(10), 1101–1104. https://doi.org/10.2116/bunsekikagaku.53.1101

Kumkrong, P., Mercier, P. H. J., Pihilligawa Gedara, I., Mihai, O., Tyo, D. D., Cindy, J., Kingston, D. M., & Mester, Z. (2021). Determination of 27 metals in HISS-1, MESS-4 and PACS-3 marine sediment certified reference materials by the BCR sequential extraction. Talanta, 221, 121543. https://doi.org/10.1016/j.talanta.2020.121543

Li, Y., McCoy-West, A. J., Zhang, S., Selby, D., Burton, K. W., & Horan, K. (2019). Controlling Mechanisms for Molybdenum Isotope Fractionation in Porphyry Deposits: The Qulong Example. Economic Geology, 114(5), 981–992. https://doi.org/10.5382/econgeo.4653

Lu, Z., Zhu, J., Tan, D., Wang, X., & Zheng, Z. (2021). δ114/110Cd Values of a Suite of Different Reference Materials. Geostandards and Geoanalytical Research, 45(3), 565–581. https://doi.org/10.1111/ggr.12380

Mahan, B. M., Wu, F., Dosseto, A., Chung, R., Schaefer, B., & Turner, S. (2020). SpinChem™: rapid element purification from biological and geological matrices via centrifugation for MC-ICP-MS isotope analyses – a case study with Zn. Journal of Analytical Atomic Spectrometry, 35(5), 863–872. https://doi.org/10.1039/c9ja00361d

Maréchal, C. N., Télouk, P., & Albarède, F. (1999). Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chemical Geology, 156(1–4), 251–273. https://doi.org/10.1016/s0009-2541(98)00191-0

McCormack, J., Szpak, P., Bourgon, N., Richards, M., Hyland, C., Méjean, P., Hublin, J.-J., & Jaouen, K. (2021). Zinc isotopes from archaeological bones provide reliable trophic level information for marine mammals. Communications Biology, 4(1). https://doi.org/10.1038/s42003-021-02212-z

McCoy-West, A. J., Baker, J. A., Faure, K., & Wysoczanski, R. (2010). Petrogenesis and Origins of Mid-Cretaceous Continental Intraplate Volcanism in Marlborough, New Zealand: Implications for the Long-lived HIMU Magmatic Mega-province of the SW Pacific. Journal of Petrology, 51(10), 2003–2045. https://doi.org/10.1093/petrology/egq046

McCoy-West, A. J., Bennett, V. C., & Amelin, Y. (2016). Rapid Cenozoic ingrowth of isotopic signatures simulating “HIMU” in ancient lithospheric mantle: Distinguishing source from process. Geochimica et Cosmochimica Acta, 187, 79–101. https://doi.org/10.1016/j.gca.2016.05.013

McCoy-West, A. J., Bennett, V. C., O’Neill, H. S. C., Hermann, J., & Puchtel, I. S. (2015). The Interplay between Melting, Refertilization and Carbonatite Metasomatism in Off-Cratonic Lithospheric Mantle under Zealandia: an Integrated Major, Trace and Platinum Group Element Study. Journal of Petrology, 56(3), 563–604. https://doi.org/10.1093/petrology/egv011

McCoy-West, A. J., Davis, A. M., Wainwright, A. N., & Tomkins, A. G. (2024). Simplifying silver isotope analysis of metallic samples: using silver nitrate precipitation to avoid perilous chloride formation. Journal of Analytical Atomic Spectrometry, 39(3), 780–790. https://doi.org/10.1039/d3ja00374d

McCoy-West, A. J., Fitton, J. G., Pons, M.-L., Inglis, E. C., & Williams, H. M. (2018). The Fe and Zn isotope composition of deep mantle source regions: Insights from Baffin Island picrites. Geochimica et Cosmochimica Acta, 238, 542–562. https://doi.org/10.1016/j.gca.2018.07.021

McCoy-West, A. J., Millet, M.-A., Nowell, G. M., Nebel, O., & Burton, K. W. (2020). Simultaneous measurement of neodymium stable and radiogenic isotopes from a single aliquot using a double spike. Journal of Analytical Atomic Spectrometry, 35(2), 388–402. https://doi.org/10.1039/c9ja00308h

McCoy-West, A. J., Mortimer, N., Burton, K. W., Ireland, T. R., & Cawood, P. A. (2022). Re-initiation of plutonism at the Gondwana margin after a magmatic hiatus: The bimodal Permian-Triassic Longwood Suite, New Zealand. Gondwana Research, 105, 432–449. https://doi.org/10.1016/j.gr.2021.09.021

McCoy-West, A., Koutamanis, D., Leduc, E., & Mahan, B. (2025). Bulk geochemical and isotopic (O-Fe-Sr-Nd) characterization of reference materials relevant to environmental impact assessments [dataset]. Interdisciplinary Earth Data Alliance (IEDA). https://doi.org/10.60520/ieda/113997

McGinnis, C. E., Jain, J. C., & Neal, C. R. (1997). Characterisation of Memory Effects and Development of an Effective Wash Protocol for the Measurement of Petrogenetically Critical Trace Elements in Geological Samples by ICP‐MS. Geostandards Newsletter, 21(2), 289–305. https://doi.org/10.1111/j.1751-908x.1997.tb00677.x

Millet, M.-A., Baker, J. A., & Payne, C. E. (2012). Ultra-precise stable Fe isotope measurements by high resolution multiple-collector inductively coupled plasma mass spectrometry with a 57Fe–58Fe double spike. Chemical Geology, 304–305, 18–25. https://doi.org/10.1016/j.chemgeo.2012.01.021

Outridge, P. M., Sanei, H., Courtney Mustaphi, C. J., & Gajewski, K. (2017). Holocene climate change influences on trace metal and organic matter geochemistry in the sediments of an Arctic lake over 7,000 years. Applied Geochemistry, 78, 35–48. https://doi.org/10.1016/j.apgeochem.2016.11.018

Raczek, I., Jochum, K. P., & Hofmann, A. W. (2003). Neodymium and Strontium Isotope Data for USGS Reference Materials BCR‐1, BCR‐2, BHVO‐1, BHVO‐2, AGV‐1, AGV‐2, GSP‐1, GSP‐2 and Eight MPI‐DING Reference Glasses. Geostandards Newsletter, 27(2), 173–179. https://doi.org/10.1111/j.1751-908x.2003.tb00644.x

Raczek, I., Stoll, B., Hofmann, A. W., & Peter Jochum, K. (2001). High‐Precision Trace Element Data for the USGS Reference Materials BCR‐1, BCR‐2, BHVO‐1, BHVO‐2, AGV‐1, AGV‐2, DTS‐1, DTS‐2, GSP‐1 and GSP‐2 by ID‐TIMS and MIC‐SSMS. Geostandards Newsletter, 25(1), 77–86. https://doi.org/10.1111/j.1751-908x.2001.tb00789.x

Reed, W. P. (1992). Certificate of analysis NISTSRM8546.

Revels, B. N., Zhang, R., Adkins, J. F., & John, S. G. (2015). Fractionation of iron isotopes during leaching of natural particles by acidic and circumneutral leaches and development of an optimal leach for marine particulate iron isotopes. Geochimica et Cosmochimica Acta, 166, 92–104. https://doi.org/10.1016/j.gca.2015.05.034

Révillon, S., & Hureau‐Mazaudier, D. (2009). Improvements in Digestion Protocols for Trace Element and Isotope Determinations in Stream and Lake Sediment Reference Materials (JSd‐1, JSd‐2, JSd‐3, JLk‐1 and LKSD‐1). Geostandards and Geoanalytical Research, 33(3), 397–413. https://doi.org/10.1111/j.1751-908x.2009.00008.x

Robinson, P. (2003). XRF and laser ablation ICP-MS analysis of flux-fused discs. The 5th International Conference on the Analysis of Geological and Environmental Materials (Rovaniemi, Finland).

Roje, V. (2019). Comment on: Mass Fractions of Forty‐Six Major and Trace Elements, Including Rare Earth Elements, in Sediment and Soil Reference Materials Used in Environmental Studies. Fiket et al. (2017), Geostandards and Geoanalytical Research, 41, 123–135. Geostandards and Geoanalytical Research, 43(2), 317–327. https://doi.org/10.1111/ggr.12255

Russo, S. C., McCoy-West, A. J., & Duuring, P. (2024). The potential for reconstructing primary ocean chemistry from hypogene and supergene altered banded iron formations: An example from Weld Range, Western Australia. Precambrian Research, 413, 107573. https://doi.org/10.1016/j.precamres.2024.107573

Sampaio, G. M. S., & Enzweiler, J. (2015). New ICP‐MS Results for Trace Elements in Five Iron‐Formation Reference Materials. Geostandards and Geoanalytical Research, 39(1), 105–119. https://doi.org/10.1111/j.1751-908x.2014.00293.x

Santrock, Jeffrey., Studley, S. A., & Hayes, J. M. (1985). Isotopic analyses based on the mass spectra of carbon dioxide. Analytical Chemistry, 57(7), 1444–1448. https://doi.org/10.1021/ac00284a060

Shaheen, M. E., & Fryer, B. J. (2011). A simple solution to expanding available reference materials for Laser Ablation Inductively Coupled Plasma Mass Spectrometry analysis: Applications to sedimentary materials. Spectrochimica Acta Part B: Atomic Spectroscopy, 66(8), 627–636. https://doi.org/10.1016/j.sab.2011.06.010

Sossi, P. A., Halverson, G. P., Nebel, O., & Eggins, S. M. (2015). Combined Separation of Cu, Fe and Zn from Rock Matrices and Improved Analytical Protocols for Stable Isotope Determination. Geostandards and Geoanalytical Research, 39(2), 129–149. https://doi.org/10.1111/j.1751-908x.2014.00298.x

Spandler, C., Hammerli, J., Sha, P., Hilbert-Wolf, H., Hu, Y., Roberts, E., & Schmitz, M. (2016). MKED1: A new titanite standard for in situ analysis of Sm–Nd isotopes and U–Pb geochronology. Chemical Geology, 425, 110–126. https://doi.org/10.1016/j.chemgeo.2016.01.002

Strelow, F. W. E. (1960). An Ion Exchange Selectivity Scale of Cations Based on Equilibrium Distribution Coefficients. Analytical Chemistry, 32(9), 1185–1188. https://doi.org/10.1021/ac60165a042

Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., Yuhara, M., Orihashi, Y., Yoneda, S., Shimizu, H., Kunimaru, T., Takahashi, K., Yanagi, T., Nakano, T., Fujimaki, H., Shinjo, R., Asahara, Y., Tanimizu, M., & Dragusanu, C. (2000). JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology, 168(3–4), 279–281. https://doi.org/10.1016/s0009-2541(00)00198-4

Terashima, S., Ando, A., Okai, T., Kanai, Y., Taniguchi, M., Takizawa, F., & Itoh, S. (1990). Elemental Concentrations in Nine New GSJ Rock Reference Samples “Sedimentary Rock Series.” Geostandards Newsletter, 14(1), 1–5. https://doi.org/10.1111/j.1751-908x.1990.tb00062.x

Thirlwall, M. F. (1991). Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis. Chemical Geology, 94(2), 85–104. https://doi.org/10.1016/s0009-2541(10)80021-x

Valeriano, C. de M., Neumann, R., Alkmim, A. R., Evangelista, H., Heilbron, M., Neto, C. C. A., & Paravidini de Souza, G. (2019). Sm–Nd and Sr isotope fingerprinting of iron mining tailing deposits spilled from the failed SAMARCO Fundão dam 2015 accident at Mariana, SE-Brazil. Applied Geochemistry, 106, 34–44. https://doi.org/10.1016/j.apgeochem.2019.04.021

Waheed, S., Rahman, A., Siddique, N., & Ahmad, S. (2007). Rare Earth and Other Trace Element Content of NRCC HISS‐1 Sandy Marine Sediment Reference Material. Geostandards and Geoanalytical Research, 31(2), 133–141. https://doi.org/10.1111/j.1751-908x.2007.00845.x

Wang, Z., Becker, H., & Wombacher, F. (2015). Mass Fractions of S, Cu, Se, Mo, Ag, Cd, In, Te, Ba, Sm, W, Tl and Bi in Geological Reference Materials and Selected Carbonaceous Chondrites Determined by Isotope Dilution ICP‐MS. Geostandards and Geoanalytical Research, 39(2), 185–208. https://doi.org/10.1111/j.1751-908x.2014.00312.x

Wasserburg, G. J., Jacobsen, S. B., DePaolo, D. J., McCulloch, M. T., & Wen, T. (1981). Precise determination of SmNd ratios, Sm and Nd isotopic abundances in standard solutions. Geochimica et Cosmochimica Acta, 45(12), 2311–2323. https://doi.org/10.1016/0016-7037(81)90085-5

Watkins, P. J., & Nolan, J. (1992). Determination of rare-earth elements, yttrium, scandium and hafnium using cation-exchange separation and inductively coupled plasma-atomic emission spectrometry. Chemical Geology, 95(1–2), 131–139. https://doi.org/10.1016/0009-2541(92)90050-f

Watson, J. S. (1996). Fast, Simple Method of Powder Pellet Preparation for X-Ray Fluorescence Analysis. X-Ray Spectrometry, 25(4), 173–174. https://doi.org/10.1002/(sici)1097-4539(199607)25:4<173::aid-xrs158>3.0.co;2-z

Weis, D., Kieffer, B., Maerschalk, C., Barling, J., de Jong, J., Williams, G. A., Hanano, D., Pretorius, W., Mattielli, N., Scoates, J. S., Goolaerts, A., Friedman, R. M., & Mahoney, J. B. (2006). High‐precision isotopic characterization of USGS reference materials by TIMS and MC‐ICP‐MS. Geochemistry, Geophysics, Geosystems, 7(8). https://doi.org/10.1029/2006gc001283

Weis, D., Kieffer, B., Maerschalk, C., Pretorius, W., & Barling, J. (2005). High‐precision Pb‐Sr‐Nd‐Hf isotopic characterization of USGS BHVO‐1 and BHVO‐2 reference materials. Geochemistry, Geophysics, Geosystems, 6(2). https://doi.org/10.1029/2004gc000852

Whitworth, A. J., Brand, H. E. A., Wilson, S., & Frierdich, A. J. (2020). Iron isotope geochemistry and mineralogy of jarosite in sulfur-rich sediments. Geochimica et Cosmochimica Acta, 270, 282–295. https://doi.org/10.1016/j.gca.2019.11.029

Williams, H. M., McCammon, C. A., Peslier, A. H., Halliday, A. N., Teutsch, N., Levasseur, S., & Burg, J.-P. (2004). Iron Isotope Fractionation and the Oxygen Fugacity of the Mantle. Science, 304(5677), 1656–1659. https://doi.org/10.1126/science.1095679

Yu, Z., Robinson, P., & McGoldrick, P. (2001). An Evaluation of Methods for the Chemical Decomposition of Geological Materials for Trace Element Determination using ICP‐MS. Geostandards Newsletter, 25(2–3), 199–217. https://doi.org/10.1111/j.1751-908x.2001.tb00596.x

Zhong, S., & Mucci, A. (1995). Partitioning of rare earth elements (REEs) between calcite and seawater solutions at 25°C and 1 atm, and high dissolved REE concentrations. Geochimica et Cosmochimica Acta, 59(3), 443–453. https://doi.org/10.1016/0016-7037(94)00381-u

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Alex J. McCoy-West, Dafne Koutamanis, Evelyne M. S. Leduc, Brandon Mahan