Petrogenesis of Néma 001, an alkali-rich meteorite from the acapulcoite-lodranite parent body
Read Online
PDF
Data, Code, and Outputs

Supplementary Files

Supplementary Material

Keywords

meteorite
petrology
acapulcoite
lodranite
isotopes
chronology
geochemistry

How to Cite

Tartèse, R., Gattacceca, J., Avice, G., Beck, P., Devouard, B., Debaille, V., Fawcett, L., Hublet, G., Joy, K. H., Sonzogni, C., & Villeneuve, J. (2025). Petrogenesis of Néma 001, an alkali-rich meteorite from the acapulcoite-lodranite parent body. Advances in Geochemistry and Cosmochemistry, 1(2), 776. https://doi.org/10.33063/agc.v1i2.776

Abstract

Primitive achondrites are meteorites characterised by granoblastic textures evidencing high-temperature metamorphism and low degrees of partial melting. These include the acapulcoite and lodranite meteorites, which originated from a common parent body. Acapulcoites experienced low degrees of partial melting (ca. <1 to 5%) and lodranites experienced higher degrees of partial melting (∼5-20%). Meteorite collections also include a sample of their chondritic precursor, Grove Mountains 020043, as well as limited examples of partial melting products, such as the mm-sized gabbroic clasts in the Lewis Cliff 86220 transitional acapulcoite-lodranite and the 4.86 g pyroxene-plagioclase coarse-grained Frontier Mountain 93001 meteorite. This suite of samples, thus, provides us with a crucial snapshot into the transition from chondritic material to differentiated planetesimals. Here we propose that the 75.8 g alkali-rich Néma 001 meteorite, a coarse-grained igneous meteorite composed primarily of ortho- and clinopyroxene, plagioclase, and olivine, also originated from the acapulcoite-lodranite parent body. This is supported by a bulk oxygen isotope composition that is undistinguishable from that of the acapulcoites-lodranites and similar ferromagnesian mineral Fe/Mn ratios. Petrological modelling suggests that Néma 001 represents silicate melts formed by ∼15% melting of a chondritic precursor similar to Grove Mountains 020043. With the addition of Néma 001, we now have a comprehensive suite of samples from the acapulcoite-lodranite parent body, including chondritic precursor material, residues from ∼1-20% partial melting, and variably differentiated igneous rocks. This unique suite of samples is key to further investigate melting and differentiation processes of asteroids, and supports the existence of partially differentiated planetesimals.

https://doi.org/10.33063/agc.v1i2.776
Read Online
PDF
Data, Code, and Outputs

References

Alexandre, A., Basile-Doelsch, I., Sonzogni, C., Sylvestre, F., Parron, C., Meunier, J.-D., & Colin, F. (2006). Oxygen isotope analyses of fine silica grains using laser-extraction technique: Comparison with oxygen isotope data obtained from ion microprobe analyses and application to quartzite and silcrete cement investigation. Geochimica et Cosmochimica Acta, 70(11), 2827–2835. https://doi.org/10.1016/j.gca.2006.03.003

Amelin, Y. (2005). Meteorite phosphates show constant 176Lu decay rate since 4557 million years ago. Science, 310(5749), 839–841. https://doi.org/10.1126/science.1117919

Apen, F. E., Wall, C. J., Cottle, J. M., Schmitz, M. D., Kylander-Clark, A. R. C., & Seward, G. G. E. (2022). Apatites for destruction: Reference apatites from Morocco and Brazil for U-Pb petrochronology and Nd and Sr isotope geochemistry. Chemical Geology, 590, 120689. https://doi.org/10.1016/j.chemgeo.2021.120689

Avice, G., Kendrick, M. A., Richard, A., & Ferrière, L. (2023). Ancient atmospheric noble gases preserved in post-impact hydrothermal minerals of the 200 Ma-old Rochechouart impact structure, France. Earth and Planetary Science Letters, 620, 118351. https://doi.org/10.1016/j.epsl.2023.118351

Barrat, J. A., Greenwood, R. C., Verchovsky, A. B., Gillet, Ph., Bollinger, C., Langlade, J. A., Liorzou, C., & Franchi, I. A. (2015). Crustal differentiation in the early solar system: Clues from the unique achondrite Northwest Africa 7325 (NWA 7325). Geochimica et Cosmochimica Acta, 168, 280–292. https://doi.org/10.1016/j.gca.2015.07.020

Barrat, J. A., Zanda, B., Moynier, F., Bollinger, C., Liorzou, C., & Bayon, G. (2012). Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn Isotopes. Geochimica et Cosmochimica Acta, 83, 79–92. https://doi.org/10.1016/j.gca.2011.12.011

Barrat, J.-A., Chaussidon, M., Yamaguchi, A., Beck, P., Villeneuve, J., Byrne, D. J., Broadley, M. W., & Marty, B. (2021). A 4,565-My-old andesite from an extinct chondritic protoplanet. Proceedings of the National Academy of Sciences, 118(11). https://doi.org/10.1073/pnas.2026129118

Basunia, M. S., & Hurst, A. M. (2016). Nuclear Data Sheets for A = 26. Nuclear Data Sheets, 134, 1–148. https://doi.org/10.1016/j.nds.2016.04.001

Beattie, P. (1993). Olivine-melt and orthopyroxene-melt equilibria. Contributions to Mineralogy and Petrology, 115(1), 103–111. https://doi.org/10.1007/bf00712982

Benedix, G. K., McCoy, T. J., Keil, K., Bogard, D. D. and Garrison, D. H. (1998) A petrologic and isotopic study of winonaites: Evidence for early partial melting, brecciation, and metamorphism. Geochim. Cosmochim. Acta 62, 2535-2553. https://doi.org/10.1016/S0016-7037(98)00166-5

Berkley, J. L., Taylor, G. J., Keil, K., Harlow, G. E. and Prinz, M. (1980) The nature and origin of ureilites. Geochim. Cosmochim. Acta 44, 1579-1597. https://doi.org/10.1016/0016-7037(80)90119-2

Bischoff, A., Horstmann, M., Barrat, J.-A., Chaussidon, M., Pack, A., Herwartz, D., Ward, D., Vollmer, C., & Decker, S. (2014). Trachyandesitic volcanism in the early Solar System. Proceedings of the National Academy of Sciences, 111(35), 12689–12692. https://doi.org/10.1073/pnas.1404799111

Bogard, D. D. (2011). K–Ar ages of meteorites: Clues to parent-body thermal histories. Geochemistry, 71(3), 207–226. https://doi.org/10.1016/j.chemer.2011.03.001

Brey, G. P., & Köhler, T. (1990). Geothermobarometry in Four-phase Lherzolites II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers. Journal of Petrology, 31(6), 1353–1378. https://doi.org/10.1093/petrology/31.6.1353

Bryson, J. F. J., Weiss, B. P., Getzin, B., Abrahams, J. N. H., Nimmo, F., & Scholl, A. (2019). Paleomagnetic Evidence for a Partially Differentiated Ordinary Chondrite Parent Asteroid. Journal of Geophysical Research: Planets, 124(7), 1880–1898. https://doi.org/10.1029/2019je005951

Busemann, H., Baur, H. and Wieler, R. (2000) Primordial noble gases in “phase Q” in carbonaceous and ordinary chondrites studied by closed-system stepped etching. Meteorit. Planet. Sci. 35, 949-973. https://doi.org/10.1111/j.1945-5100.2000.tb01485.x

Bussweiler, Y., Giuliani, A., Greig, A., Kjarsgaard, B. A., Petts, D., Jackson, S. E., Barrett, N., Luo, Y., & Pearson, D. G. (2019). Trace element analysis of high-Mg olivine by LA-ICP-MS – Characterization of natural olivine standards for matrix-matched calibration and application to mantle peridotites. Chemical Geology, 524, 136–157. https://doi.org/10.1016/j.chemgeo.2019.06.019

Carporzen, L., Weiss, B. P., Elkins-Tanton, L. T., Shuster, D. L., Ebel, D., & Gattacceca, J. (2011). Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proceedings of the National Academy of Sciences, 108(16), 6386–6389. https://doi.org/10.1073/pnas.1017165108

Cattani, F., Avice, G., Ferrière, L., & Alwmark, S. (2024). Noble gases in shocked igneous rocks from the 380 Ma-old Siljan impact structure (Sweden): A search for paleo-atmospheric signatures. Chemical Geology, 670, 122440. https://doi.org/10.1016/j.chemgeo.2024.122440

Chakraborty, S., Farver, J. R., Yund, R. A. and Rubie, D. C. (1994) Mg tracer diffusion in synthetic forsterite and San Carlos olivine as a function of P, T and fO2. Phys. Chem. Minerals 21, 489-500. https://doi.org/10.1007/BF00203923

Chew, D. M., Babechuk, M. G., Cogné, N., Mark, C., O’Sullivan, G. J., Henrichs, I. A., Doepke, D., & McKenna, C. A. (2016). (LA,Q)-ICPMS trace-element analyses of Durango and McClure Mountain apatite and implications for making natural LA-ICPMS mineral standards. Chemical Geology, 435, 35–48. https://doi.org/10.1016/j.chemgeo.2016.03.028

Chew, D. M., Petrus, J. A., & Kamber, B. S. (2014). U–Pb LA–ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology, 363, 185–199. https://doi.org/10.1016/j.chemgeo.2013.11.006

Clayton, R. N. (1993). Oxygen Isotopes in Meteorites. Annual Review of Earth and Planetary Sciences, 21(1), 115–149. https://doi.org/10.1146/annurev.ea.21.050193.000555

Cloutis, E. A. (2002). Pyroxene reflectance spectra: Minor absorption bands and effects of elemental substitutions. Journal of Geophysical Research: Planets, 107(E6). https://doi.org/10.1029/2001je001590

Cochrane, R., Spikings, R. A., Chew, D., Wotzlaw, J.-F., Chiaradia, M., Tyrrell, S., Schaltegger, U., & Van der Lelij, R. (2014). High temperature (>350°C) thermochronology and mechanisms of Pb loss in apatite. Geochimica et Cosmochimica Acta, 127, 39–56. https://doi.org/10.1016/j.gca.2013.11.028

Collinet, M., & Grove, T. L. (2020a). Formation of primitive achondrites by partial melting of alkali-undepleted planetesimals in the inner solar system. Geochimica et Cosmochimica Acta, 277, 358–376. https://doi.org/10.1016/j.gca.2020.03.004

Collinet, M., & Grove, T. L. (2020b). Widespread production of silica- and alkali-rich melts at the onset of planetesimal melting. Geochimica et Cosmochimica Acta, 277, 334–357. https://doi.org/10.1016/j.gca.2020.03.005

Cournède, C., Gattacceca, J., Rochette, P., & Shuster, D. L. (2020). Paleomagnetism of Rumuruti chondrites suggests a partially differentiated parent body. Earth and Planetary Science Letters, 533, 116042. https://doi.org/10.1016/j.epsl.2019.116042

Crowther, S. A., Whitby, J. A., Busfield, A., Holland, G., Busemann, H., & Gilmour, J. D. (2009). Collisional modification of the acapulcoite/lodranite parent body revealed by the iodine‐xenon system in lodranites. Meteoritics & Planetary Science, 44(8), 1151–1159. https://doi.org/10.1111/j.1945-5100.2009.tb01214.x

Dauphas, N., & Chaussidon, M. (2011). A Perspective from Extinct Radionuclides on a Young Stellar Object: The Sun and Its Accretion Disk. Annual Review of Earth and Planetary Sciences, 39(1), 351–386. https://doi.org/10.1146/annurev-earth-040610-133428

Day, J. M. D., Ash, R. D., Liu, Y., Bellucci, J. J., III, D. R., McDonough, W. F., Walker, R. J., & Taylor, L. A. (2009). Early formation of evolved asteroidal crust. Nature, 457(7226), 179–182. https://doi.org/10.1038/nature07651

Day, J. M. D., Walker, R. J., Ash, R. D., Liu, Y., Rumble, D., Irving, A. J., Goodrich, C. A., Tait, K., McDonough, W. F., & Taylor, L. A. (2012). Origin of felsic achondrites Graves Nunataks 06128 and 06129, and ultramafic brachinites and brachinite-like achondrites by partial melting of volatile-rich primitive parent bodies. Geochimica et Cosmochimica Acta, 81, 94–128. https://doi.org/10.1016/j.gca.2011.12.017

DeMeo, F. E., Binzel, R. P., Slivan, S. M., & Bus, S. J. (2009). An extension of the Bus asteroid taxonomy into the near-infrared. Icarus, 202(1), 160–180. https://doi.org/10.1016/j.icarus.2009.02.005

Dhaliwal, J. K., Day, J. M. D., Corder, C. A., Tait, K. T., Marti, K., Assayag, N., Cartigny, P., Rumble, D., & Taylor, L. A. (2017). Early metal-silicate differentiation during planetesimal formation revealed by acapulcoite and lodranite meteorites. Geochimica et Cosmochimica Acta, 216, 115–140. https://doi.org/10.1016/j.gca.2017.06.042

Dodson, M. H. (1973) Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral. Petrol. 40, 259-264. https://doi.org/10.1007/BF00373790

Easton, A. J. (1985). SEVEN NEW BULK CHEMICAL ANALYSES OF AUBRITES. Meteoritics, 20(3), 571–573. https://doi.org/10.1111/j.1945-5100.1985.tb00052.x

Elkins-Tanton, L. T., Weiss, B. P., & Zuber, M. T. (2011). Chondrites as samples of differentiated planetesimals. Earth and Planetary Science Letters, 305(1–2), 1–10. https://doi.org/10.1016/j.epsl.2011.03.010

Eugster, O., & Lorenzetti, S. (2005). Cosmic-ray exposure ages of four acapulcoites and two differentiated achondrites and evidence for a two-layer structure of the acapulcoite/lodranite parent asteroid. Geochimica et Cosmochimica Acta, 69(10), 2675–2685. https://doi.org/10.1016/j.gca.2004.12.006

Eugster, O., & Michel, Th. (1995). Common asteroid break-up events of eucrites, diogenites, and howardites and cosmic-ray production rates for noble gases in achondrites. Geochimica et Cosmochimica Acta, 59(1), 177–199. https://doi.org/10.1016/0016-7037(94)00327-i

Feldstein, S. N., Jones, R. H., & Papike, J. J. (2001). Disequilibrium partial melting experiments on the Leedey L6 chondrite: Textural controls on melting processes. Meteoritics & Planetary Science, 36(11), 1421–1441. https://doi.org/10.1111/j.1945-5100.2001.tb01836.x

Floss, C. (2000). Complexities on the acapulcoite‐lodranite parent body: Evidence from trace element distributions in silicate minerals. Meteoritics & Planetary Science, 35(5), 1073–1085. https://doi.org/10.1111/j.1945-5100.2000.tb01494.x

Folco, L., D’Orazio, M., & Burroni, A. (2006). Frontier Mountain 93001: A coarse-grained, enstatite-augite-oligoclase-rich, igneous rock from the acapulcoite-lodranite parent asteroid. Meteoritics & Planetary Science, 41(8), 1183–1198. https://doi.org/10.1111/j.1945-5100.2006.tb00515.x

Galy, A., Yoffe, O., Janney, P. E., Williams, R. W., Cloquet, C., Alard, O., Halicz, L., Wadhwa, M., Hutcheon, I. D., Ramon, E., & Carignan, J. (2003). Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements. Journal of Analytical Atomic Spectrometry, 18(11), 1352. https://doi.org/10.1039/b309273a

Gattacceca, J., Weiss, B. P., & Gounelle, M. (2016). New constraints on the magnetic history of the CV parent body and the solar nebula from the Kaba meteorite. Earth and Planetary Science Letters, 455, 166–175. https://doi.org/10.1016/j.epsl.2016.09.008

Golabek, G. J., Bourdon, B., & Gerya, T. V. (2014). Numerical models of the thermomechanical evolution of planetesimals: Application to the acapulcoite‐lodranite parent body. Meteoritics & Planetary Science, 49(6), 1083–1099. https://doi.org/10.1111/maps.12302

Greenwood, R. C., Burbine, T. H., Miller, M. F., & Franchi, Ian. A. (2017). Melting and differentiation of early-formed asteroids: The perspective from high precision oxygen isotope studies. Geochemistry, 77(1), 1–43. https://doi.org/10.1016/j.chemer.2016.09.005

Greenwood, R. C., Franchi, I. A., Gibson, J. M., & Benedix, G. K. (2012). Oxygen isotope variation in primitive achondrites: The influence of primordial, asteroidal and terrestrial processes. Geochimica et Cosmochimica Acta, 94, 146–163. https://doi.org/10.1016/j.gca.2012.06.025

Gualda, G. A. R., Ghiorso, M. S., Lemons, R. V., & Carley, T. L. (2012). Rhyolite-MELTS: a Modified Calibration of MELTS Optimized for Silica-rich, Fluid-bearing Magmatic Systems. Journal of Petrology, 53(5), 875–890. https://doi.org/10.1093/petrology/egr080

Härtel, B., Matthews, W. A., & Enkelmann, E. (2023). Duluth Complex FC1 Apatite and Zircon: Reference Materials for (U-Th)/He Dating? Geostandards and Geoanalytical Research, 47(3), 669–681. https://doi.org/10.1111/ggr.12492

Hennessy, J., & Turner, G. (1980). 40Ar-39Ar ages and irradiation history of Luna 24 basalts. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 297(1428), 27–39. https://doi.org/10.1098/rsta.1980.0202

Hevey, P. J., & Sanders, I. S. (2006). A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science, 41(1), 95–106. https://doi.org/10.1111/j.1945-5100.2006.tb00195.x

Hibiya, Y., Archer, G. J., Tanaka, R., Sanborn, M. E., Sato, Y., Iizuka, T., Ozawa, K., Walker, R. J., Yamaguchi, A., Yin, Q.-Z., Nakamura, T., & Irving, A. J. (2019). The origin of the unique achondrite Northwest Africa 6704: Constraints from petrology, chemistry and Re–Os, O and Ti isotope systematics. Geochimica et Cosmochimica Acta, 245, 597–627. https://doi.org/10.1016/j.gca.2018.04.031

Howell, D., Griffin, W. L., Pearson, N. J., Powell, W., Wieland, P., & O’Reilly, S. Y. (2013). Trace element partitioning in mixed-habit diamonds. Chemical Geology, 355, 134–143. https://doi.org/10.1016/j.chemgeo.2013.07.013

Hublet, G., Debaille, V., Wimpenny, J., & Yin, Q.-Z. (2017). Differentiation and magmatic activity in Vesta evidenced by 26Al-26Mg dating in eucrites and diogenites. Geochimica et Cosmochimica Acta, 218, 73–97. https://doi.org/10.1016/j.gca.2017.09.005

Hunt, A. C., Benedix, G. K., Hammond, S. J., Bland, P. A., Rehkämper, M., Kreissig, K., & Strekopytov, S. (2017). A geochemical study of the winonaites: Evidence for limited partial melting and constraints on the precursor composition. Geochimica et Cosmochimica Acta, 199, 13–30. https://doi.org/10.1016/j.gca.2016.10.043

Iacovino, K. and Till, C. B. (2019) DensityX: A program for calculating the densities magmatic liquids up to 1,627 °C and 30 kbar. Volcanica 2, 1-10 https://doi.org/10.30909/vol.02.01.0110

Jacobsen, B., Yin, Q., Moynier, F., Amelin, Y., Krot, A. N., Nagashima, K., Hutcheon, I. D., & Palme, H. (2008). 26Al–26Mg and 207Pb–206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth and Planetary Science Letters, 272(1–2), 353–364. https://doi.org/10.1016/j.epsl.2008.05.003

Jochum, K. P., Willbold, M., Raczek, I., Stoll, B., & Herwig, K. (2005). Chemical Characterisation of the USGS Reference Glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G Using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostandards and Geoanalytical Research, 29(3), 285–302. https://doi.org/10.1111/j.1751-908x.2005.tb00901.x

Jurewicz, A. J. G., Mittlefehldt, D. W., & Jones, J. H. (1995). Experimental partial melting of the St. Severin (LL) and Lost City (H) chondrites. Geochimica et Cosmochimica Acta, 59(2), 391–408. https://doi.org/10.1016/0016-7037(94)00328-j

Keil, K. (2012). Angrites, a small but diverse suite of ancient, silica-undersaturated volcanic-plutonic mafic meteorites, and the history of their parent asteroid. Geochemistry, 72(3), 191–218. https://doi.org/10.1016/j.chemer.2012.06.002

Keil, K., & McCoy, T. J. (2018). Acapulcoite-lodranite meteorites: Ultramafic asteroidal partial melt residues. Geochemistry, 78(2), 153–203. https://doi.org/10.1016/j.chemer.2017.04.004

Kleine, T., Mezger, K., Palme, H., Scherer, E., & Münker, C. (2005). Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal-rich chondrites, and iron meteorites. Geochimica et Cosmochimica Acta, 69(24), 5805–5818. https://doi.org/10.1016/j.gca.2005.07.012

Kleine, T., Touboul, M., Bourdon, B., Nimmo, F., Mezger, K., Palme, H., Jacobsen, S. B., Yin, Q.-Z., & Halliday, A. N. (2009). Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73(17), 5150–5188. https://doi.org/10.1016/j.gca.2008.11.047

Krot, A. N., Keil, K., Scott, E. R. D., Goodrich, C. A., & Weisberg, M. K. (2014). Classification of Meteorites and Their Genetic Relationships. In Treatise on Geochemistry (pp. 1–63). Elsevier. https://doi.org/10.1016/b978-0-08-095975-7.00102-9

Li, S., Yin, Q.-Z., Bao, H., Sanborn, M. E., Irving, A., Ziegler, K., Agee, C., Marti, K., Miao, B., Li, X., Li, Y., & Wang, S. (2018). Evidence for a multilayered internal structure of the chondritic acapulcoite-lodranite parent asteroid. Geochimica et Cosmochimica Acta, 242, 82–101. https://doi.org/10.1016/j.gca.2018.09.004

Liang, Y., Sun, C., & Yao, L. (2013). A REE-in-two-pyroxene thermometer for mafic and ultramafic rocks. Geochimica et Cosmochimica Acta, 102, 246–260. https://doi.org/10.1016/j.gca.2012.10.035

Lindsay, F. N., Herzog, G. F., Park, J., Delaney, J. S., Turrin, B. D., & Swisher, C. C. (2014). 40Ar/39Ar dating of microgram feldspar grains from the paired feldspathic achondrites GRA 06128 and 06129. Geochimica et Cosmochimica Acta, 129, 96–110. https://doi.org/10.1016/j.gca.2013.12.023

Lucas, M. P., Dygert, N., Ren, J., Hesse, M. A., Miller, N. R., & McSween, H. Y. (2022). Thermochemical evolution of the acapulcoite–lodranite parent body: Evidence for fragmentation‐disrupted partial differentiation. Meteoritics & Planetary Science, 57(12), 2248–2275. https://doi.org/10.1111/maps.13930

Mahlke, M., Carry, B., & Mattei, P.-A. (2022). Asteroid taxonomy from cluster analysis of spectrometry and albedo. Astronomy & Astrophysics, 665, A26. https://doi.org/10.1051/0004-6361/202243587

Mason, B. (1967). Meteorites. Am. Sci, 55, 429–455.

McCoy, T. J., Corrigan, C. M., Dickinson, T. L., Benedix, G. K., Schrader, D. L., & Davidson, J. (2019). Grove Mountains (GRV) 020043: Insights into acapulcoite-lodranite genesis from the most primitive member. Geochemistry, 79(4), 125536. https://doi.org/10.1016/j.chemer.2019.125536

McCoy, T. J., Keil, K., Clayton, R. N., Mayeda, T. K., Bogard, D. D., Garrison, D. H., & Wieler, R. (1997). A petrologic and isotopic study of lodranites: Evidence for early formation as partial melt residues from heterogeneous precursors. Geochimica et Cosmochimica Acta, 61(3), 623–637. https://doi.org/10.1016/s0016-7037(96)00359-6

McCoy, T. J., Keil, K., Muenow, D. W., & Wilson, L. (1997). Partial melting and melt migration in the acapulcoite-lodranite parent body. Geochimica et Cosmochimica Acta, 61(3), 639–650. https://doi.org/10.1016/s0016-7037(96)00365-1

Mittlefehldt, D. W. (2015). Asteroid (4) Vesta: I. The howardite-eucrite-diogenite (HED) clan of meteorites. Geochemistry, 75(2), 155–183. https://doi.org/10.1016/j.chemer.2014.08.002

Mittlefehldt, D. W., Lindstrom, M. M., Bogard, D. D., Garrison, D. H., & Field, S. W. (1996). Acapulco- and Lodran-like achondrites: Petrology, geochemistry, chronology, and origin. Geochimica et Cosmochimica Acta, 60(5), 867–882. https://doi.org/10.1016/0016-7037(95)00423-8

Mourey, A. J., Shea, T., & Hammer, J. E. (2023). Preservation of Magma Recharge Signatures in Kīlauea Olivine During Protracted Storage. Journal of Geophysical Research: Solid Earth, 128(1). https://doi.org/10.1029/2022jb025523

Neave, D. A., Stewart, A. G., Hartley, M. E., & Namur, O. (2024). Iron valence systematics in clinopyroxene crystals from ocean island basalts. Contributions to Mineralogy and Petrology, 179(6). https://doi.org/10.1007/s00410-024-02144-x

Nehru, C. E., Prinz, M., Delaney, J. S., Dreibus, G., Palme, H., Spettel, B. and Wänke, H. (1983) Brachina: a new type of meteorite, not a chassignite. J. Geophys. Res. 88, B237-B244. https://doi.org/10.1029/JB088iS01p0B237

Neumann, W., Henke, S., Breuer, D., Gail, H.-P., Schwarz, W. H., Trieloff, M., Hopp, J., & Spohn, T. (2018). Modeling the evolution of the parent body of acapulcoites and lodranites: A case study for partially differentiated asteroids. Icarus, 311, 146–169. https://doi.org/10.1016/j.icarus.2018.03.024

Outrequin, C., Alexandre, A., Vallet-Coulomb, C., Piel, C., Devidal, S., Landais, A., Couapel, M., Mazur, J.-C., Peugeot, C., Pierre, M., Prié, F., Roy, J., Sonzogni, C., & Voigt, C. (2021). The triple oxygen isotope composition of phytoliths, a new proxy of atmospheric relative humidity: controls of soil water isotope composition, temperature, CO2 concentration and relative humidity. Climate of the Past, 17(5), 1881–1902. https://doi.org/10.5194/cp-17-1881-2021

Ott, U. (2014) Planetary and pre-solar noble gases in meteorites. Geochemistry 74, 519-544. https://doi.org/10.1016/j.chemer.2014.01.003

Ozima, M. and Podosek, F. A. (2001) Noble Gas Geochemistry, 300 pp., Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511545986

Papike, J. J., Karner, J. M. and Shearer, C.K. (2003) Determination of planetary basalt parentage: A simple technique using the electron microprobe. Am. Mineral. 88, 469-472. https://doi.org/10.2138/am-2003-2-323

Paton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A., & Maas, R. (2010). Improved laser ablation U‐Pb zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems, 11(3). https://doi.org/10.1029/2009gc002618

Patzer, A., Schultz, L., & Franke, L. (2003). New noble gas data of primitive and differentiated achondrites including Northwest Africa 011 and Tafassasset. Meteoritics & Planetary Science, 38(10), 1485–1497. https://doi.org/10.1111/j.1945-5100.2003.tb00252.x

Paul, A. N., Spikings, R. A., & Gaynor, S. P. (2021). U-Pb ID-TIMS reference ages and initial Pb isotope compositions for Durango and Wilberforce apatites. Chemical Geology, 586, 120604. https://doi.org/10.1016/j.chemgeo.2021.120604

Pellas, P., Fiéni, C., Trieloff, M., & Jessberger, E. K. (1997). The cooling history of the Acapulco meteorite as recorded by the 244Pu and 40Ar-39Ar chronometers. Geochimica et Cosmochimica Acta, 61(16), 3477–3501. https://doi.org/10.1016/s0016-7037(97)00167-1

Petaev, M. I., Barsukova, L. D., Lipschutz, M. E., Wang, M. ‐S., Ariskin, A. A., Clayton, R. N., & Mayeda, T. K. (1994). The Divnoe meteorite: Petrology, chemistry, oxygen isotopes and origin. Meteoritics, 29(2), 182–199. https://doi.org/10.1111/j.1945-5100.1994.tb00671.x

Peterson, L. D., Newcombe, M. E., Alexander, C. M. O., Wang, J., & Nielsen, S. G. (2024). The H-poor nature of incompletely melted planetesimals: The view from acapulcoites and lodranites. Geochimica et Cosmochimica Acta, 370, 1–14. https://doi.org/10.1016/j.gca.2024.02.002

Peterson, L. D., Newcombe, M. E., Alexander, C. M. O., Wang, J., & Nielsen, S. G. (2025). A reconstruction of the H2O and F contents of the Erg Cech 002 parent body. Geochimica et Cosmochimica Acta, 399, 82–92. https://doi.org/10.1016/j.gca.2025.04.009

Petrus, J. A., & Kamber, B. S. (2012). VizualAge: A Novel Approach to Laser Ablation ICP‐MS U‐Pb Geochronology Data Reduction. Geostandards and Geoanalytical Research, 36(3), 247–270. https://doi.org/10.1111/j.1751-908x.2012.00158.x

Piralla, M., Villeneuve, J., Schnuriger, N., Bekaert, D. V., & Marrocchi, Y. (2023). A unified chronology of dust formation in the early solar system. Icarus, 394, 115427. https://doi.org/10.1016/j.icarus.2023.115427

Potin, S., Brissaud, O., Beck, P., Schmitt, B., Magnard, Y., Correia, J.-J., Rabou, P., & Jocou, L. (2018). SHADOWS: a spectro-gonio radiometer for bidirectional reflectance studies of dark meteorites and terrestrial analogs: design, calibrations, and performances on challenging surfaces. Applied Optics, 57(28), 8279. https://doi.org/10.1364/ao.57.008279

Pravdivtseva, O., Tissot, F. L. H., Dauphas, N. and Amari, S. (2020) Evidence of presolar SiC in the Allende Curious Marie calcium–aluminium-rich inclusion. Nature Astro. 4, 617-624. https://doi.org/10.1038/s41550-019-1000-z

Prinz, M., Keil, K., Hlava, P. F., Berkley, J. L., Gomes, C. B. and Curvello, W. S. (1977) Studies of Brazilian Meteorites, III. Origin and history of the Angra dos Reis achondrite. Earth Planet. Sci. Lett. 35, 317-330. https://doi.org/10.1016/0012-821X(77)90134-0

Renne, P. R., Balco, G., Ludwig, K. R., Mundil, R., & Min, K. (2011). Response to the comment by W.H. Schwarz et al. on “Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by P.R. Renne et al. (2010). Geochimica et Cosmochimica Acta, 75(17), 5097–5100. https://doi.org/10.1016/j.gca.2011.06.021

Sanborn, M. E., Wimpenny, J., Williams, C. D., Yamakawa, A., Amelin, Y., Irving, A. J., & Yin, Q.-Z. (2019). Carbonaceous achondrites Northwest Africa 6704/6693: Milestones for early Solar System chronology and genealogy. Geochimica et Cosmochimica Acta, 245, 577–596. https://doi.org/10.1016/j.gca.2018.10.004

Schoene, B., & Bowring, S. A. (2007). Determining accurate temperature–time paths from U–Pb thermochronology: An example from the Kaapvaal craton, southern Africa. Geochimica et Cosmochimica Acta, 71(1), 165–185. https://doi.org/10.1016/j.gca.2006.08.029

Schwandt, C. S., Cygan, R. T. and Westrich, H. R. (1998) Magnesium self-diffusion in orthoenstatite. Contrib. Mineral. Petrol. 130, 390-396. https://doi.org/10.1007/s004100050373

Shearer, C. K., Burger, P. V., Neal, C., Sharp, Z., Spivak-Birndorf, L., Borg, L., Fernandes, V. A., Papike, J. J., Karner, J., Wadhwa, M., Gaffney, A., Shafer, J., Geissman, J., Atudorei, N.-V., Herd, C., Weiss, B. P., King, P. L., Crowther, S. A., & Gilmour, J. D. (2010). Non-basaltic asteroidal magmatism during the earliest stages of solar system evolution: A view from Antarctic achondrites Graves Nunatak 06128 and 06129. Geochimica et Cosmochimica Acta, 74(3), 1172–1199. https://doi.org/10.1016/j.gca.2009.10.029

Smith, T., He, H., Li, S., & Su, F. (2023). Light noble gases in 11 achondrites: Cosmic ray exposure ages, gas retention ages, and preatmospheric sizes. Meteoritics & Planetary Science, 58(11), 1580–1599. https://doi.org/10.1111/maps.14085

Srinivasan, P., Dunlap, D. R., Agee, C. B., Wadhwa, M., Coleff, D., Ziegler, K., Zeigler, R., & McCubbin, F. M. (2018). Silica-rich volcanism in the early solar system dated at 4.565 Ga. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-05501-0

Suavet, C., Alexandre, A., Franchi, I. A., Gattacceca, J., Sonzogni, C., Greenwood, R. C., Folco, L., & Rochette, P. (2010). Identification of the parent bodies of micrometeorites with high-precision oxygen isotope ratios. Earth and Planetary Science Letters, 293(3–4), 313–320. https://doi.org/10.1016/j.epsl.2010.02.046

Sugiura, N., & Fujiya, W. (2014). Correlated accretion ages and ε54Cr of meteorite parent bodies and the evolution of the solar nebula. Meteoritics & Planetary Science, 49(5), 772–787. https://doi.org/10.1111/maps.12292

Takeda, H., Mori, H., Hiroi, T., & Saito, J. (1994). Mineralogy of new Antarctic achondrites with affinity to Lodran and a model of their evolution in an asteroid. Meteoritics, 29(6), 830–842. https://doi.org/10.1111/j.1945-5100.1994.tb01096.x

Tartèse, R., Anand, M., & Franchi, I. A. (2019). H and Cl isotope characteristics of indigenous and late hydrothermal fluids on the differentiated asteroidal parent body of Grave Nunataks 06128. Geochimica et Cosmochimica Acta, 266, 529–543. https://doi.org/10.1016/j.gca.2019.01.024

Tartèse, R., Gattacceca, J., Avice, G., Beck, P., Devouard, B., Debaille, V., Fawcett, L., Hublet, G., Joy, K. H., Sonzogni, C., & Villeneuve, J. (2025). Mineralogy, bulk and mineral geochemistry, geochronology, and noble gas isotope data for the Néma 001 meteorite [Dataset]. University of Manchester. https://doi.org/10.48420/29126567.V3

Toplis, M. J. (2005). The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contributions to Mineralogy and Petrology, 149(1), 22–39. https://doi.org/10.1007/s00410-004-0629-4

Touboul, M., Kleine, T., Bourdon, B., Van Orman, J. A., Maden, C., & Zipfel, J. (2009). Hf–W thermochronometry: II. Accretion and thermal history of the acapulcoite–lodranite parent body. Earth and Planetary Science Letters, 284(1–2), 168–178. https://doi.org/10.1016/j.epsl.2009.04.022

Usui, T., Jones, J. H., & Mittlefehldt, D. W. (2015). A partial melting study of an ordinary (H) chondrite composition with application to the unique achondrite Graves Nunataks 06128 and 06129. Meteoritics & Planetary Science, 50(4), 759–781. https://doi.org/10.1111/maps.12392

Van Orman, J. A., Cherniak, D. J. and Kita, N. T. (2014) Magnesium diffusion in plagioclase: dependence on composition, and implications for thermal resetting of the 26Al–26Mg early solar system chronometer. Earth Planet. Sci. Lett. 385, 79-88. https://doi.org/10.1016/j.epsl.2013.10.026

Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9(5), 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001

Villeneuve, J., Chaussidon, M., & Libourel, G. (2009). Homogeneous Distribution of 26Al in the Solar System from the Mg Isotopic Composition of Chondrules. Science, 325(5943), 985–988. https://doi.org/10.1126/science.1173907

Warren, P. H., Rubin, A. E., Isa, J., Brittenham, S., Ahn, I., & Choi, B.-G. (2013). Northwest Africa 6693: A new type of FeO-rich, low-Δ17O, poikilitic cumulate achondrite. Geochimica et Cosmochimica Acta, 107, 135–154. https://doi.org/10.1016/j.gca.2012.12.025

Weigel, A., Eugster, O., Koeberl, C., Michel, R., Krähenbühl, U., & Neumann, S. (1999). Relationships among lodranites and acapulcoites: noble gas isotopic abundances, chemical composition, cosmic-ray exposure ages, and solar cosmic ray effects. Geochimica et Cosmochimica Acta, 63(2), 175–192. https://doi.org/10.1016/s0016-7037(99)00012-5

Weiss, B. P., & Elkins-Tanton, L. T. (2013). Differentiated Planetesimals and the Parent Bodies of Chondrites. Annual Review of Earth and Planetary Sciences, 41(1), 529–560. https://doi.org/10.1146/annurev-earth-040610-133520

Wieler, R. (2002) Cosmic-Ray-Produced Noble Gases in Meteorites. Rev. Mineral. Geochem. 47, 125-170. https://doi.org/10.2138/rmg.2002.47.5

Wieler, R., Huber, L., Busemann, H., Seiler, S., Leya, I., Maden, C., Masarik, J., Meier, M. M. M., Nagao, K., Trappitsch, R., & Irving, A. J. (2016). Noble gases in 18 Martian meteorites and angrite Northwest Africa 7812—Exposure ages, trapped gases, and a re‐evaluation of the evidence for solar cosmic ray‐produced neon in shergottites and other achondrites. Meteoritics & Planetary Science, 51(2), 407–428. https://doi.org/10.1111/maps.12600

Woodhead, J. D., & Hergt, J. M. (2000). Pb‐Isotope Analyses of USGS Reference Materials. Geostandards Newsletter, 24(1), 33–38. https://doi.org/10.1111/j.1751-908x.2000.tb00584.x

Wostbrock, J. A. G., & Sharp, Z. D. (2021). Triple Oxygen Isotopes in Silica–Water and Carbonate–Water Systems. Reviews in Mineralogy and Geochemistry, 86(1), 367–400. https://doi.org/10.2138/rmg.2021.86.11

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Romain Tartèse, Jérome Gattacceca, Guillaume Avice, Pierre Beck, Bertrand Devouard, Vinciane Debaille, Lydia Fawcett, Genevieve Hublet, Katherine H. Joy, Corinne Sonzogni, Johan Villeneuve