Abstract
Ramlat Fasad (RF) 532 is a lunar meteorite recovered from the desert plains of Oman in 2018 during systematic searching. Our study shows that RF 532 is a monomict gabbro breccia, dominantly composed of anorthitic plagioclase and augitic to pigeonitic pyroxene. In situ Pb isotope analyses of feldspars, pyroxene, symplectite, apatite, zircon, and zirconolite reveal a minimum crystallisation age of 3858.9 ± 3.2 Ma (2σ uncertainty), and Pb isotope evolution modelling indicates that it was derived from a source with a 238U/204Pb ratio of ~71–81 (typically referred to as the µ-value). With a monomict brecciated texture, partly maskelynitised plagioclase, and melt pockets and veins, it was likely subject to shock pressures of ~20–25 GPa. In terms of petrology, geochemistry, and geochronology, RF 532 is indistinguishable from the ‘YAMM’ meteorites—Yamato 793169, Asuka 881757, Miller Range 05035, and Meteorite Hills 01210, which are basaltic/gabbroic lunar meteorites recovered from various Antarctic icefields—indicating that all the stones are grouped. Together, they sample a basaltic lava flow and overlying regolith that has been subject to at least one impact event. They were likely ejected from the Moon at the same time, but differences in terrestrial residence ages and recovery locations suggest they did not fall to Earth in the same event. Thus, RF 532 and the YAMM group become the first lunar launch group where all members were recovered during systematic searches, with precise recovery coordinates for all meteorites.
References
Anders, E., & Grevesse, N. (1989). Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53(1), 197–214. https://doi.org/10.1016/0016-7037(89)90286-x
Arai, T., Ray Hawke, B., Giguere, T. A., Misawa, K., Miyamoto, M., & Kojima, H. (2010). Antarctic lunar meteorites Yamato-793169, Asuka-881757, MIL 05035, and MET 01210 (YAMM): Launch pairing and possible cryptomare origin. Geochimica et Cosmochimica Acta, 74(7), 2231–2248. https://doi.org/10.1016/j.gca.2009.11.019
Arai, T., Warren, P. H., & Takeda, H. (1996). Four lunar mare meteorites: Crystallization trends of pyroxenes and spinels. Meteoritics & Planetary Science, 31(6), 877–892. https://doi.org/10.1111/j.1945-5100.1996.tb02121.x
Basilevsky, A. T., Neukum, G., & Nyquist, L. (2010). The spatial and temporal distribution of lunar mare basalts as deduced from analysis of data for lunar meteorites. Planetary and Space Science, 58(14–15), 1900–1905. https://doi.org/10.1016/j.pss.2010.08.020
Bence, A. E., & Papike, J. J. (1972). Pyroxenes as recorders of lunar basalt petrogenesis: Chemical trends due to crystal-liquid interaction. Proceedings of the 3rd Lunar Science Conference, 1, 431–469. https://ui.adsabs.harvard.edu/abs/1972LPSC....3..431B
Bindschadler, R., Vornberger, P., Fleming, A., Fox, A., Mullins, J., Binnie, D., Paulsen, S., Granneman, B., & Gorodetzky, D. (2008). The Landsat Image Mosaic of Antarctica. Remote Sensing of Environment, 112(12), 4214–4226. https://doi.org/10.1016/j.rse.2008.07.006
Buizert, C., Baggenstos, D., Jiang, W., Purtschert, R., Petrenko, V. V., Lu, Z.-T., Müller, P., Kuhl, T., Lee, J., Severinghaus, J. P., & Brook, E. J. (2014). Radiometric ⁸¹Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica. Proceedings of the National Academy of Sciences, 111(19), 6876–6881. https://doi.org/10.1073/pnas.1320329111
Cassidy, W., Harvey, R., Schutt, J., Delisle, G., & Yanai, K. (1992). The meteorite collection sites of Antarctica. Meteoritics, 27(5), 490–525. https://doi.org/10.1111/j.1945-5100.1992.tb01073.x
Černok, A., White, L. F., Darling, J., Dunlop, J., & Anand, M. (2019). Shock‐induced microtextures in lunar apatite and merrillite. Meteoritics & Planetary Science, 54(6), 1262–1282. https://doi.org/10.1111/maps.13278
Che, X., Long, T., Nemchin, A., Xie, S., Qiao, L., Li, Z., Ban, Y., Fan, R., Yang, C., & Liu, D. (2025). Isotopic and compositional constraints on the source of basalt collected from the lunar farside. Science, 387(6740), 1306–1310. https://doi.org/10.1126/science.adt3332
Cochrane, R., Spikings, R. A., Chew, D., Wotzlaw, J.-F., Chiaradia, M., Tyrrell, S., Schaltegger, U., & Van der Lelij, R. (2014). High temperature (>350°C) thermochronology and mechanisms of Pb loss in apatite. Geochimica et Cosmochimica Acta, 127, 39–56. https://doi.org/10.1016/j.gca.2013.11.028
Collins, G. S., Melosh, H. J., & Marcus, R. A. (2005). Earth Impact Effects Program: A Web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteoritics & Planetary Science, 40(6), 817–840. https://doi.org/10.1111/j.1945-5100.2005.tb00157.x
Connelly, J. N., Bizzarro, M., Krot, A. N., Nordlund, AAke, Wielandt, D., & Ivanova, M. A. (2012). The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk. Science, 338(6107), 651–655. https://doi.org/10.1126/science.1226919
Connolly, H. C., Smith, C., Benedix, G., Folco, L., Righter, K., Zipfel, J., Yamaguchi, A., & Aoudjehane, H. C. (2007). The Meteoritical Bulletin, No. 92, 2007 September. Meteoritics & Planetary Science, 42(9), 1647–1694. https://doi.org/10.1111/j.1945-5100.2007.tb00596.x
Corti, G., Zeoli, A., & Bonini, M. (2003). Ice-flow dynamics and meteorite collection in Antarctica. Earth and Planetary Science Letters, 215(3–4), 371–378. https://doi.org/10.1016/s0012-821x(03)00440-0
Day, J. M. D., Floss, C., Taylor, L. A., Anand, M., & Patchen, A. D. (2006). Evolved mare basalt magmatism, high Mg/Fe feldspathic crust, chondritic impactors, and the petrogenesis of Antarctic lunar breccia meteorites Meteorite Hills 01210 and Pecora Escarpment 02007. Geochimica et Cosmochimica Acta, 70(24), 5957–5989. https://doi.org/10.1016/j.gca.2006.05.001
Day, J. M. D., Taylor, L. A., Floss, C., Patchen, A. D., Schnare, D. W., & Pearson, D. G. (2006). Comparative petrology, geochemistry, and petrogenesis of evolved, low-Ti lunar mare basalt meteorites from the LaPaz Icefield, Antarctica. Geochimica et Cosmochimica Acta, 70(6), 1581–1600. https://doi.org/10.1016/j.gca.2005.11.015
Dymek, R. F., Albee, A. L., & Chodos, A. A. (1975). Comparative mineralogy and petrology of Apollo 17 mare basalts: samples 70215, 71055, 74255, and 75055. Proceedings of the 6th Lunar Science Conference, 49–77. https://ui.adsabs.harvard.edu/abs/1975LPSC....6...49D
Elardo, S. M., Shearer, C. K., Fagan, A. L., Borg, L. E., Gaffney, A. M., Burger, P. V., Neal, C. R., Fernandes, V. A., & McCubbin, F. M. (2014). The origin of young mare basalts inferred from lunar meteorites Northwest Africa 4734, 032, and LaPaz Icefield 02205. Meteoritics & Planetary Science, 49(2), 261–291. https://doi.org/10.1111/maps.12239
Fernandes, V. A., Burgess, R., & Morris, A. (2009). ⁴⁰Ar‐³⁹Ar age determinations of lunar basalt meteorites Asuka 881757, Yamato 793169, Miller Range 05035, La Paz Icefield 02205, Northwest Africa 479, and basaltic breccia Elephant Moraine 96008. Meteoritics & Planetary Science, 44(6), 805–821. https://doi.org/10.1111/j.1945-5100.2009.tb00770.x
Fritz, J. (2012). Impact ejection of lunar meteorites and the age of Giordano Bruno. Icarus, 221(2), 1183–1186. https://doi.org/10.1016/j.icarus.2012.08.019
Fritz, J., Greshake, A., & Fernandes, V. A. (2017). Revising the shock classification of meteorites. Meteoritics & Planetary Science, 52(6), 1216–1232. https://doi.org/10.1111/maps.12845
Gattacceca, J., McCubbin, F. M., Grossman, J., Bouvier, A., Chabot, N. L., D’Orazio, M., Goodrich, C., Greshake, A., Gross, J., Komatsu, M., Miao, B., & Schrader, D. (2022). The Meteoritical Bulletin, No. 110. Meteoritics & Planetary Science, 57(11), 2102–2105. https://doi.org/10.1111/maps.13918
Gattacceca, J., McCubbin, F. M., Grossman, J. N., Schrader, D. L., Cartier, C., Consolmagno, G., Goodrich, C., Greshake, A., Gross, J., Joy, K. H., Miao, B., & Zhang, B. (2025). The Meteoritical Bulletin, No. 113. Meteoritics & Planetary Science, 60(7), 1587–1591. https://doi.org/10.1111/maps.14374
Gladman, B. J., Burns, J. A., Duncan, M. J., & Levison, H. F. (1995). The Dynamical Evolution of Lunar Impact Ejecta. Icarus, 118(2), 302–321. https://doi.org/10.1006/icar.1995.1193
Gladman, B. J., Burns, J. A., Duncan, M., Lee, P., & Levison, H. F. (1996). The Exchange of Impact Ejecta Between Terrestrial Planets. Science, 271(5254), 1387–1392. https://doi.org/10.1126/science.271.5254.1387
Göpel, C., Manhès, G., & Allègre, C. J. (1985). U-Pb systematics in iron meteorites: Uniformity of primordial lead. Geochimica et Cosmochimica Acta, 49(8), 1681–1695. https://doi.org/10.1016/0016-7037(85)90139-5
Hidaka, H., Sakuma, K., Nishiizumi, K., & Yoneda, S. (2017). Isotopic Evidence for Multi-stage Cosmic-ray Exposure Histories of Lunar Meteorites: Long Residence on the Moon and Short Transition to the Earth. The Astronomical Journal, 153(6), 274. https://doi.org/10.3847/1538-3881/aa7139
Hiess, J., Condon, D. J., McLean, N., & Noble, S. R. (2012). 238U/235U Systematics in Terrestrial Uranium-Bearing Minerals. Science, 335(6076), 1610–1614. https://doi.org/10.1126/science.1215507
Hill, E., Taylor, L. A., Floss, C., & Liu, Y. (2009). Lunar meteorite LaPaz Icefield 04841: Petrology, texture, and impact‐shock effects of a low‐Ti mare basalt. Meteoritics & Planetary Science, 44(1), 87–94. https://doi.org/10.1111/j.1945-5100.2009.tb00719.x
Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., & Essling, A. M. (1971). Precision Measurement of Half-Lives and Specific Activities of U 235 and U 238. Physical Review C, 4(5), 1889–1906. https://doi.org/10.1103/physrevc.4.1889
Jarosewich, E., Nelen, J. A., & Norberg, J. A. (1980a). Corrections. Geostandards Newsletter, 4(2), 257–258. https://doi.org/10.1111/j.1751-908X.1980.tb00296.x
Jarosewich, E., Nelen, J. A., & Norberg, J. A. (1980b). Reference Samples for Electron Microprobe Analysis. Geostandards Newsletter, 4(1), 43–47. https://doi.org/10.1111/j.1751-908x.1980.tb00273.x
Jochum, K. P., Wilson, S. A., Abouchami, W., Amini, M., Chmeleff, J., Eisenhauer, A., Hegner, E., Iaccheri, L. M., Kieffer, B., Krause, J., McDonough, W. F., Mertz-Kraus, R., Raczek, I., Rudnick, R. L., Scholz, D., Steinhoefel, G., Stoll, B., Stracke, A., Tonarini, S., … Woodhead, J. D. (2011). GSD-1G and MPI-DING Reference Glasses for In Situ and Bulk Isotopic Determination. Geostandards and Geoanalytical Research, 35(2), 193–226. https://doi.org/10.1111/j.1751-908x.2010.00114.x
Jolliff, B. L., Korotev, R. L., & Haskin, L. A. (1993). Lunar basaltic meteorites Yamato-793169 and Asuka-881757: Samples of the same low-Ti mare-lava? 18th Symposium on Antarctic Meteorites, 214–217.
Joy, K. H., Crawford, I. A., Anand, M., Greenwood, R. C., Franchi, I. A., & Russell, S. S. (2008). The petrology and geochemistry of Miller Range 05035: A new lunar gabbroic meteorite. Geochimica et Cosmochimica Acta, 72(15), 3822–3844. https://doi.org/10.1016/j.gca.2008.04.032
Joy, K. H., Crawford, I. A., Downes, H., Russell, S. S., & Kearsley, A. T. (2006). A petrological, mineralogical, and chemical analysis of the lunar mare basalt meteorite LaPaz Icefield 02205, 02224, and 02226. Meteoritics & Planetary Science, 41(7), 1003–1025. https://doi.org/10.1111/j.1945-5100.2006.tb00500.x
Joy, K. H., Crawford, I. A., Russell, S. S., & Kearsley, A. T. (2010). Lunar meteorite regolith breccias: An in situ study of impact melt composition using LA-ICP-MS with implications for the composition of the lunar crust: Lunar meteorite regolith breccias. Meteoritics & Planetary Science, 45(6), 917–946. https://doi.org/10.1111/j.1945-5100.2010.01067.x
Joy, K. H., Gross, J., Korotev, R. L., Zeigler, R. A., McCubbin, F. M., Snape, J. F., Curran, N. M., Pernet-Fisher, J. F., & Arai, T. (2023). Lunar Meteorites. Reviews in Mineralogy and Geochemistry, 89(1), 509–562. https://doi.org/10.2138/rmg.2023.89.12
Kennedy, A. K., Wotzlaw, J., Crowley, J. L., Schmitz, M., Schaltegger, U., Wade, B., Martin, L., Talavera, C., Ware, B., & Bui, T. H. (2023). Apatite Reference Materials for SIMS Microanalysis of Isotopes and Trace Elements. Geostandards and Geoanalytical Research, 47(2), 373–402. https://doi.org/10.1111/ggr.12477
Kiefer, W. S., Macke, R. J., Britt, D. T., Irving, A. J., & Consolmagno, G. J. (2012). The density and porosity of lunar rocks. Geophysical Research Letters, 39(7). https://doi.org/10.1029/2012gl051319
Koeberl, C., Kurat, G., & Brandstätter, F. (1993). Gabbroic lunar mare meteorites Asuka-881757 (Asuka-31) and Yamato-793169: Geochemical and mineralogical study. Antarctic Meteorite Research, 6, 14–34. https://ui.adsabs.harvard.edu/abs/1993AMR.....6...14K
Korotev, R. L., & Irving, A. J. (2021). Lunar meteorites from northern Africa. Meteoritics & Planetary Science, 56(2), 206–240. https://doi.org/10.1111/maps.13617
Korotev, R. L., Jolliff, B. L., Zeigler, R. A., & Haskin, L. A. (2003). Compositional constraints on the launch pairing of the three brecciated lunar meteorites of basaltic composition. Antarctic Meteorite Research, 16, 152–175. https://ui.adsabs.harvard.edu/abs/2003AMR....16..152K
Korotev, R. L., & Zeigler, R. A. (2014). ANSMET Meteorites from the Moon. In 35 Seasons of U.S. Antarctic Meteorites (1976–2010) (pp. 101–130). Wiley. https://doi.org/10.1002/9781118798478.ch6
Li, Y., Li, B., Hsu, W., Jull, A. J. T., Liao, S., Zhao, Y., Zhao, H., Wu, Y., Li, S., & Tang, C. (2022). A unique stone skipping–like trajectory of asteroid Aletai. Science Advances, 8(25). https://doi.org/10.1126/sciadv.abm8890
Liu, Y., Floss, C., Day, J. M. D., Hill, E., & Taylor, L. A. (2009). Petrogenesis of lunar mare basalt meteorite Miller Range 05035. Meteoritics & Planetary Science, 44(2), 261–284. https://doi.org/10.1111/j.1945-5100.2009.tb00733.x
Lorenzetti, S., Busemann, H., & Eugster, O. (2005). Regolith history of lunar meteorites. Meteoritics & Planetary Science, 40(2), 315–327. https://doi.org/10.1111/j.1945-5100.2005.tb00383.x
Merle, R. E., Nemchin, A. A., Whitehouse, M. J., Kenny, G. G., & Snape, J. F. (2024). Pb Isotope Signature of a Low-μ (238U/204Pb) Lunar Mantle Component. Journal of Petrology, 65(6). https://doi.org/10.1093/petrology/egae062
Merle, R. E., Nemchin, A. A., Whitehouse, M. J., Snape, J. F., Kenny, G. G., Bellucci, J. J., Connelly, J. N., & Bizzarro, M. (2020). Pb‐Pb ages and initial Pb isotopic composition of lunar meteorites: NWA 773 clan, NWA 4734, and Dhofar 287. Meteoritics & Planetary Science, 55(8). https://doi.org/10.1111/maps.13547
Mészáros, M., Leya, I., & Hofmann, B. A. (2017). Cosmic‐ray exposure histories of the lunar meteorites AaU 012 and Shişr 166. Meteoritics & Planetary Science, 52(9), 2040–2050. https://doi.org/10.1111/maps.12904
Mikouchi, T. (1999). Shocked plagioclase in the lunar meteorites Yamato-793169 and Asuka-881757: Implications for their shock and thermal histories. Antarctic Meteorite Research, 12, 151–167. https://ui.adsabs.harvard.edu/abs/1999AMR....12..151M
Misawa, K., Tatsumoto, M., Dalrymple, G. B., & Yanai, K. (1993). An extremely low U/Pb source in the Moon: U-Th-Pb, Sm-Nd, Rb-Sr, and 40Ar/39Ar isotopic systematics and age of lunar meteorite Asuka 881757. Geochimica et Cosmochimica Acta, 57(19), 4687–4702. https://doi.org/10.1016/0016-7037(93)90193-z
Moore, J. C., Nishio, F., Fujita, S., Narita, H., Pasteur, E., Grinsted, A., Sinisalo, A., & Maeno, N. (2006). Interpreting ancient ice in a shallow ice core from the South Yamato (Antarctica) blue ice area using flow modeling and compositional matching to deep ice cores. Journal of Geophysical Research: Atmospheres, 111(D16). https://doi.org/10.1029/2005jd006343
Mouginot, J., Rignot, E., & Scheuchl, B. (2019). Continent‐Wide, Interferometric SAR Phase, Mapping of Antarctic Ice Velocity. Geophysical Research Letters, 46(16), 9710–9718. https://doi.org/10.1029/2019gl083826
Nemchin, A. A., Long, T., Jolliff, B. L., Wan, Y., Snape, J. F., Zeigler, R., Grange, M. L., Liu, D., Whitehouse, M. J., Timms, N. E., & Jourdan, F. (2021). Ages of lunar impact breccias: Limits for timing of the Imbrium impact. Geochemistry, 81(1), 125683. https://doi.org/10.1016/j.chemer.2020.125683
Nishiizumi, K., Arnold, J. R., Caffee, M. W., Finkel, C. R., & Reedy, C. R. (1992). Cosmic ray exposure histories of lunar meteorites Asuka-881757, Yamato-793169, and Calcalong Creek. 17th Symposium on Antarctic Meteorites, 129–132. https://ui.adsabs.harvard.edu/abs/1992anme...17..129N
Nishiizumi, K., & Caffee, M. W. (2013). Relationships among six lunar meteorites from Miller Range, Antarctica based on cosmogenic radionuclides (Abstract #2715). Lunar and Planetary Science Conference, 44th.
Nishiizumi, K., Hillegonds, D. J., & Welten, K. C. (2006). Exposure and terrestrial histories of lunar meteorites LAP 02205/02224/02226/02436, MET 01210, and PCA 02007 (Abstract #2369). Lunar and Planetary Science, 37th.
Ohtani, E., Ozawa, S., Miyahara, M., Ito, Y., Mikouchi, T., Kimura, M., Arai, T., Sato, K., & Hiraga, K. (2011). Coesite and stishovite in a shocked lunar meteorite, Asuka-881757, and impact events in lunar surface. Proceedings of the National Academy of Sciences, 108(2), 463–466. https://doi.org/10.1073/pnas.1009338108
Oliveira, B., Snape, J., Tartese, R., & Joy, K. (2025). Mineral geochemistry and U-Th-Pb isotope systematics of the Ramlat Fasad 532 gabbroic lunar meteorite [Dataset]. University of Manchester. https://doi.org/10.48420/28902935.v1
Ono, H., Kurosawa, K., Niihara, T., Mikouchi, T., Tomioka, N., Isa, J., Kagi, H., Matsuzaki, T., Sakuma, H., Genda, H., Sakaiya, T., Kondo, T., Kayama, M., Koike, M., Sano, Y., Murayama, M., Satake, W., & Matsui, T. (2023). Experimentally Shock‐Induced Melt Veins in Basalt: Improving the Shock Classification of Eucrites. Geophysical Research Letters, 50(1). https://doi.org/10.1029/2022gl101009
Paquet, M., Moynier, F., Sossi, P. A., Dai, W., & Day, J. M. D. (2025). Volatile loss history of the Moon from the copper isotopic compositions of mare basalts. Earth and Planetary Science Letters, 656, 119250. https://doi.org/10.1016/j.epsl.2025.119250
Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508. https://doi.org/10.1039/c1ja10172b
Righter, K., Collins, S. J., & Brandon, A. D. (2005). Mineralogy and petrology of the LaPaz Icefield lunar mare basaltic meteorites. Meteoritics & Planetary Science, 40(11), 1703–1722. https://doi.org/10.1111/j.1945-5100.2005.tb00139.x
Russell, S. S., Folco, L., Grady, M. M., Zolensky, M. E., Jones, R., Righter, K., Zipfel, J., & Grossman, J. N. (2004). The Meteoritical Bulletin, No. 88, 2004 July. Meteoritics & Planetary Science, 39(S8). https://doi.org/10.1111/j.1945-5100.2004.tb00357.x
Snape, J. F., Nemchin, A. A., Bellucci, J. J., Whitehouse, M. J., Tartèse, R., Barnes, J. J., Anand, M., Crawford, I. A., & Joy, K. H. (2016). Lunar basalt chronology, mantle differentiation and implications for determining the age of the Moon. Earth and Planetary Science Letters, 451, 149–158. https://doi.org/10.1016/j.epsl.2016.07.026
Snape, J. F., Nemchin, A. A., Whitehouse, M. J., Merle, R. E., Hopkinson, T., & Anand, M. (2019). The timing of basaltic volcanism at the Apollo landing sites. Geochimica et Cosmochimica Acta, 266, 29–53. https://doi.org/10.1016/j.gca.2019.07.042
Stacey, J. S., & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2), 207–221. https://doi.org/10.1016/0012-821x(75)90088-6
Steiger, R. H., & Jäger, E. (1977). Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36(3), 359–362. https://doi.org/10.1016/0012-821x(77)90060-7
Stöffler, D., Hamann, C., & Metzler, K. (2018). Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system. Meteoritics & Planetary Science, 53(1), 5–49. https://doi.org/10.1111/maps.12912
Stöffler, D., Knöll, H.-D., & Maerz, U. (1979). Terrestrial and lunar impact breccias and the classification of lunar highland rocks. Lunar and Planetary Science Conference Proceedings, 1, 639–675. https://ui.adsabs.harvard.edu/abs/1979LPSC...10..639S
Svetsov, V. (1995). Disintegration of Large Meteoroids in Earth’s Atmosphere: Theoretical Models. Icarus, 116(1), 131–153. https://doi.org/10.1006/icar.1995.1116
Takeda, H., Arai, T., & Saiki, K. (1993). Mineralogical studies of lunar meteorite Yamato-793169, a mare basalt. Antarctic Meteorite Research, 6, 3–13. https://ui.adsabs.harvard.edu/abs/1993AMR.....6....3T
Terada, K., Sasaki, Y., Anand, M., Joy, K. H., & Sano, Y. (2007). Uranium–lead systematics of phosphates in lunar basaltic regolith breccia, Meteorite Hills 01210. Earth and Planetary Science Letters, 259(1–2), 77–84. https://doi.org/10.1016/j.epsl.2007.04.029
Thalmann, C., Eugster, O., Herzog, G. F., Xue, S., Klein, J., Krähenbühl, U., & Vogt, S. (1996). History of lunar meteorites Queen Alexandra Range 93069, Asuka 881757, and Yamato 793169 based on noble gas isotopic abundances, radionuclide concentrations, and chemical composition. Meteoritics & Planetary Science, 31(6), 857–868. https://doi.org/10.1111/j.1945-5100.1996.tb02119.x
Thiessen, F., Nemchin, A. A., Snape, J. F., Bellucci, J. J., & Whitehouse, M. J. (2018). Apollo 12 breccia 12013: Impact-induced partial Pb loss in zircon and its implications for lunar geochronology. Geochimica et Cosmochimica Acta, 230, 94–111. https://doi.org/10.1016/j.gca.2018.03.023
Thiessen, F., Nemchin, A. A., Snape, J. F., Whitehouse, M. J., & Bellucci, J. J. (2017). Impact history of the Apollo 17 landing site revealed by U‐Pb SIMS ages. Meteoritics & Planetary Science, 52(4), 584–611. https://doi.org/10.1111/maps.12814
Tollenaar, V., Zekollari, H., Kittel, C., Farinotti, D., Lhermitte, S., Debaille, V., Goderis, S., Claeys, P., Joy, K. H., & Pattyn, F. (2024). Antarctic meteorites threatened by climate warming. Nature Climate Change, 14(4), 340–343. https://doi.org/10.1038/s41558-024-01954-y
Torigoye-Kita, N., Misawa, K., Dalrymple, G. B., & Tatsumoto, M. (1995). Further evidence for a low U/Pb source in the moon: U-Th-Pb, Sm-Nd, and Ar-Ar isotopic systematics of lunar meteorite Yamato-793169. Geochimica et Cosmochimica Acta, 59(12), 2621–2632. https://doi.org/10.1016/0016-7037(95)00154-9
Vaniman, D. T., & Papike, J. J. (1977). Very low Ti (VLT) basalts: A new mare rock type from the Apollo 17 drill core. Proceedings of the 8th Lunar Science Conference, 1443–1471. https://ui.adsabs.harvard.edu/abs/1977LPSC....8.1443V
Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9(5), 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
Wang, Y., Hsu, W., Guan, Y., Li, X., Li, Q., Liu, Y., & Tang, G. (2012). Petrogenesis of the Northwest Africa 4734 basaltic lunar meteorite. Geochimica et Cosmochimica Acta, 92, 329–344. https://doi.org/10.1016/j.gca.2012.06.024
Warren, P. H. (1994). Lunar and Martian Meteorite Delivery Services. Icarus, 111(2), 338–363. https://doi.org/10.1006/icar.1994.1149
Welten, K. C., Nishiizumi, K., Caffee, M. W., Hillegonds, D. J., Johnson, J. A., Jull, A. J. T., Wieler, R., & Folco, L. (2006). Terrestrial ages, pairing, and concentration mechanism of Antarctic chondrites from Frontier Mountain, Northern Victoria Land. Meteoritics & Planetary Science, 41(7), 1081–1094. https://doi.org/10.1111/j.1945-5100.2006.tb00506.x
Whillans, I. M., & Cassidy, W. A. (1983). Catch a Falling Star: Meteorites and Old Ice. Science, 222(4619), 55–57. https://doi.org/10.1126/science.222.4619.55
Willis, I. C., Pope, E. L., Leysinger Vieli, G. J.-M. C., Arnold, N. S., & Long, S. (2016). Drainage networks, lakes and water fluxes beneath the Antarctic ice sheet. Annals of Glaciology, 57(72), 96–108. https://doi.org/10.1017/aog.2016.15
Woodhead, J. D., & Hergt, J. M. (2000). Pb‐Isotope Analyses of USGS Reference Materials. Geostandards Newsletter, 24(1), 33–38. https://doi.org/10.1111/j.1751-908x.2000.tb00584.x
Yanai, K. (1991). Gabbroic meteorite Asuka-31: Preliminary examination of a new type of lunar meteorite in the Japanese collection of Antarctic meteorites. Lunar and Planetary Science Conference Proceedings, 21, 317–324. https://ui.adsabs.harvard.edu/abs/1991LPSC...21..317Y
Yanai, K., & Kojima, H. (1991). Varieties of lunar meteorites recovered from Antarctica. Antarctic Meteorite Research, 4, 70–90. https://ui.adsabs.harvard.edu/abs/1991AMR.....4...70Y
Zeigler, R. A., Korotev, R. L., Jolliff, B. L., & Haskin, L. A. (2005). Petrography and geochemistry of the LaPaz Icefield basaltic lunar meteorite and source crater pairing with Northwest Africa 032. Meteoritics & Planetary Science, 40(7), 1073–1101. https://doi.org/10.1111/j.1945-5100.2005.tb00174.x
Zhang, A., Hsu, W., Li, Q., Liu, Y., Jiang, Y., & Tang, G. (2010). SIMS Pb/Pb dating of Zr-rich minerals in lunar meteorites Miller Range 05035 and LaPaz Icefield 02224: Implications for the petrogenesis of mare basalt. Science China Earth Sciences, 53(3), 327–334. https://doi.org/10.1007/s11430-010-0041-z
Zwally, H. J., Giovinetto, M. B., Beckley, M. A., & Saba, J. L. (2012). Antarctic and Greenland Drainage Systems. In GSFC Cryospheric Sciences Laboratory. https://earth.gsfc.nasa.gov/cryo/data/polar-altimetry/antarctic-and-greenland-drainage-systems

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2025 Bre H. Oliveira, Joshua F. Snape, Romain Tartèse, Heejin Jeon, Martin J. Whitehouse, Katherine H. Joy