Abstract
Hydrous apatite in the nakhlite group of martian meteorites shows evidence of Cl-rich fluid incorporation into the magma prior to apatite crystallisation. Thus, nakhlite apatite D/H ratios should reflect a mixture between the parental magma and this crustally derived fluid. Here we present the volatile content and D/H ratios of apatite within the nakhlite Lafayette (δD 137 to 352‰), suggesting mixing between a crustally derived Cl-rich fluid and an intermediate D/H ratio (δD ≈ 400‰) and a magma with a low D/H ratio (δD ≈ −100‰). This martian mantle D/H ratio is similar to that of Earth’s upper mantle, but is higher than recent D/H ratios measured within a number of other inner Solar System materials. Thus, D/H ratio heterogeneity in these materials points towards multiple sources of hydrogen during the formation of rocky planetary bodies in the inner Solar System.
References
Alexander, C. M. O. (2017). The origin of inner Solar System water. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375(2094), 20150384. https://doi.org/10.1098/rsta.2015.0384
Alexander, C. M. O., Bowden, R., Fogel, M. L., Howard, K. T., Herd, C. D. K., & Nittler, L. R. (2012). The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets. Science, 337(6095), 721–723. https://doi.org/10.1126/science.1223474
Barbarand, J., & Pagel, M. (2001). Cathodoluminescence study of apatite crystals. American Mineralogist, 86(4), 473–484. https://doi.org/10.2138/am-2001-0411
Barnes, J., Franchi, I., Anand, M., Tartèse, R., Starkey, N., Koike, M., Sano, Y., & Russell, S. (2013). Accurate and precise measurements of the D/H ratio and hydroxyl content in lunar apatites using NanoSIMS. Chemical Geology, 337, 48–55. https://doi.org/10.1016/j.chemgeo.2012.11.015
Barnes, J. J., McCubbin, F. M., Santos, A. R., Day, J. M., Boyce, J. W., Schwenzer, S. P., Ott, U., Franchi, I. A., Messenger, S., Anand, M., & others. (2020). Multiple early-formed water reservoirs in the interior of Mars. Nature Geoscience, 13(4), 260–264. https://doi.org/10.1038/s41561-020-0552-y
Birski, Ł., Słaby, E., Chatzitheodoridis, E., Wirth, R., Majzner, K., Kozub-Budzyń, G. A., Sláma, J., Liszewska, K., Kocjan, I., & Zagórska, A. (2019). Apatite from NWA 10153 and NWA 10645—The key to deciphering magmatic and fluid evolution history in nakhlites. Minerals, 9(11), 695. https://doi.org/10.3390/min9110695
Boctor, N., Alexander, C. O., Wang, J., & Hauri, E. (2003). The sources of water in Martian meteorites: Clues from hydrogen isotopes. Geochimica et Cosmochimica Acta, 67(20), 3971–3989. https://doi.org/10.1016/S0016-7037(03)00234-5
Brounce, M., Boyce, J. W., & McCubbin, F. M. (2022). Sulfur in apatite from the Nakhla meteorite record a late-stage oxidation event. Earth and Planetary Science Letters, 595, 117784. https://doi.org/10.1016/j.epsl.2022.117784
Cohen, B. E., Mark, D. F., Cassata, W. S., Lee, M. R., Tomkinson, T., & Smith, C. L. (2017). Taking the pulse of Mars via dating of a plume-fed volcano. Nature Communications, 8(1), 640. https://doi.org/10.1038/s41467-017-00513-8
Corrigan, C. M., Velbel, M. A., & Vicenzi, E. P. (2015). Modal abundances of pyroxene, olivine, and mesostasis in nakhlites: Heterogeneity, variation, and implications for nakhlite emplacement. Meteoritics & Planetary Science, 50(9), 1497–1511. https://doi.org/10.1111/maps.12492
Daly, L., Lee, M. R., Piazolo, S., Griffin, S., Bazargan, M., Campanale, F., Chung, P., Cohen, B. E., Pickersgill, A., Hallis, L. J., & others. (2019). Boom boom pow: Shock-facilitated aqueous alteration and evidence for two shock events in the Martian nakhlite meteorites. Science Advances, 5(9), eaaw5549. https://doi.org/10.1126/sciadv.aaw5549
Daly, L., Piazolo, S., Lee, M. R., Griffin, S., Chung, P., Campanale, F., Cohen, B. E., Hallis, L. J., Trimby, P. W., Baumgartner, R., & others. (2019). Understanding the emplacement of Martian volcanic rocks using petrofabrics of the nakhlite meteorites. Earth and Planetary Science Letters, 520, 220–230. https://doi.org/10.1016/j.epsl.2019.05.050
Davidson, J., Wadhwa, M., Hervig, R. L., & Stephant, A. (2020). Water on Mars: Insights from apatite in regolith breccia Northwest Africa 7034. Earth and Planetary Science Letters, 552, 116597. https://doi.org/10.1016/j.epsl.2020.116597
Day, J. M., Taylor, L. A., Floss, C., & Mcsween Jr, H. Y. (2006). Petrology and chemistry of MIL 03346 and its significance in understanding the petrogenesis of nakhlites on Mars. Meteoritics & Planetary Science, 41(4), 581–606. https://doi.org/10.1111/j.1945-5100.2006.tb00484.x
Deligny, C., Füri, E., Deloule, E., Peslier, A., Faure, F., & Marrocchi, Y. (2023). Origin of nitrogen on Mars: First in situ N isotope analyses of martian meteorites. Geochimica et Cosmochimica Acta, 344, 134–145. https://doi.org/10.1016/j.gca.2023.01.017
Deloule, E., Albarede, F., & Sheppard, S. M. (1991). Hydrogen isotope heterogeneities in the mantle from ion probe analysis of amphiboles from ultramafic rocks. Earth and Planetary Science Letters, 105(4), 543–553. https://doi.org/10.1016/0012-821X(91)90191-J
Dong, C., Lee, Y., Ma, Y., Lingam, M., Bougher, S., Luhmann, J., Curry, S., Toth, G., Nagy, A., Tenishev, V., & others. (2018). Modeling Martian atmospheric losses over time: Implications for exoplanetary climate evolution and habitability. The Astrophysical Journal Letters, 859(1), L14. https://doi.org/10.3847/2041-8213/aac489
Gaft, M., Reisfeld, R., & Panczer, G. (2015). Modern luminescence spectroscopy of minerals and materials. Springer. https://doi.org/10.1007/978-3-319-24765-6
Giesting, P. A., Schwenzer, S. P., Filiberto, J., Starkey, N. A., Franchi, I. A., Treiman, A. H., Tindle, A. G., & Grady, M. M. (2015). Igneous and shock processes affecting chassignite amphibole evaluated using chlorine/water partitioning and hydrogen isotopes. Meteoritics & Planetary Science, 50(3), 433–460. https://doi.org/10.1111/maps.12430
Glebovitsky, V. A., Semenov, V. S., Belyatsky, B. V., Koptev-Dvornikov, E. V., Pchelintseva, N. F., Kireev, B. S., & Koltsov, A. B. (2001). The structure of the Lukkulaisvaara intrusion, Oulanka group, northern Karelia: petrological implications. The Canadian Mineralogist, 39(2), 607–637. https://doi.org/10.2113/gscanmin.39.2.607
Grant, H., Tartèse, R., Jones, R., Piani, L., & Marrocchi, Y. (2024). Identification of a primordial high D/H component in the matrix of unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta, 378, 58–70. https://doi.org/10.1016/j.gca.2024.06.005
Hallis, L., Christou, E., Davidson, J., Distel, A., & Hervig, R. (2025). Lafayette martian meteorite SIMS (D/H ratio) and EMPA data from apatite mineral grains, Version 1.0 [dataset]. Interdisciplinary Earth Data Alliance (IEDA). https://doi.org/10.60520/IEDA/113748
Hallis, L., Taylor, G., Nagashima, K., & Huss, G. (2012). Magmatic water in the martian meteorite Nakhla. Earth and Planetary Science Letters, 359, 84–92. https://doi.org/10.1016/j.epsl.2012.09.049
Harries, D., Zhao, X., & Franchi, I. (2023). Upper limits of water contents in olivine and orthopyroxene of equilibrated chondrites and several achondrites. Meteoritics & Planetary Science, 58(5), 705–721. https://doi.org/10.1111/maps.13980
Hu, S., Lin, Y., Anand, M., Franchi, I., Zhao, X., Zhang, J., Hao, J., Zhang, T., Yang, W., & Changela, H. (2020). Deuterium and 37chlorine rich fluids on the surface of Mars: Evidence from the enriched basaltic shergottite Northwest Africa 8657. Journal of Geophysical Research: Planets, 125(9), e2020JE006537. https://doi.org/10.1029/2020JE006537
Jakosky, B. M., Brain, D., Chaffin, M., Curry, S., Deighan, J., Grebowsky, J., Halekas, J., Leblanc, F., Lillis, R., Luhmann, J. G., & others. (2018). Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 315, 146–157. https://doi.org/10.1016/j.icarus.2018.05.030
Jakosky, B. M., & Hallis, L. J. (2024). Fate of an earth-like water inventory on Mars. Journal of Geophysical Research: Planets, 129(2), e2023JE008159. https://doi.org/10.1029/2023JE008159
Jakosky, B. M., & Treiman, A. H. (2023). Mars volatile inventory and outgassing history. Icarus, 402, 115627. https://doi.org/10.1016/j.icarus.2023.115627
Jin, Z., & Bose, M. (2019). New clues to ancient water on Itokawa. Science Advances, 5(5), eaav8106. https://doi.org/10.1126/sciadv.aav8106
Langenhorst, F., & Greshake, A. (1999). A transmission electron microscope study of Chassigny: Evidence for strong shock metamorphism. Meteoritics & Planetary Science, 34(1), 43–48. https://doi.org/10.1111/j.1945-5100.1999.tb01730.x
Lentz, R. F., Taylor, G., & Treiman, A. (1999). Formation of a martian pyroxenite: A comparative study of the nakhlite meteorites and Theo’s Flow. Meteoritics & Planetary Science, 34(6), 919–932. https://doi.org/10.1111/j.1945-5100.1999.tb01410.x
Mane P., Hervig R., Wadhwa M., Garvie L. A. J., Balta J. B. and McSween Jr H. Y. (2016). Hydrogen isotopic composition of the Martian mantle inferred from the newest Martian meteorite fall, Tissint. Meteoritics and Planetary Science 51(11), 2073-2091. https://doi.org/10.1111/maps.12717
Martínez, M., Shearer, C. K., & Brearley, A. J. (2023). Nanostructural domains in martian apatites that record primary subsolidus exsolution of halogens: Insights into nakhlite petrogenesis. American Mineralogist, 108(11), 2024–2042. https://doi.org/10.2138/am-2022-8794
Marty, B. (2012). The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth and Planetary Science Letters, 313, 56–66. https://doi.org/10.1016/j.epsl.2011.10.040
Mathew, K., & Marti, K. (2001). Early evolution of Martian volatiles: Nitrogen and noble gas components in ALH84001 and Chassigny. Journal of Geophysical Research: Planets, 106(E1), 1401–1422. https://doi.org/10.1029/2000JE001255
McCubbin, F. M., Elardo, S. M., Shearer Jr, C. K., Smirnov, A., Hauri, E. H., & Draper, D. S. (2013). A petrogenetic model for the comagmatic origin of chassignites and nakhlites: Inferences from chlorine-rich minerals, petrology, and geochemistry. Meteoritics & Planetary Science, 48(5), 819–853. https://doi.org/10.1111/maps.12095
McCubbin, F. M., & Nekvasil, H. (2008). Maskelynite-hosted apatite in the Chassigny meteorite: Insights into late-stage magmatic volatile evolution in martian magmas. American Mineralogist, 93(4), 676–684. https://doi.org/10.2138/am.2008.2558
Misawa, K., Shih, C.-Y., Wiesmann, H., Garrison, D. H., Nyquist, L. E., & Bogard, D. D. (2005). Rb-Sr, Sm-Nd and Ar-Ar isotopic systematics of Antarctic nakhlite Yamato 000593. Antarctic Meteorite Research, 18, 133–151. https://doi.org/10.15094/00006069
Mohapatra, R. K., & Murty, S. (2003). Precursors of Mars: Constraints from nitrogen and oxygen isotopic compositions of martian meteorites. Meteoritics & Planetary Science, 38(2), 225–241. https://doi.org/10.1111/j.1945-5100.2003.tb00261.x
Mosenfelder, J. L., Le Voyer, M., Rossman, G. R., Guan, Y., Bell, D. R., Asimow, P. D., & Eiler, J. M. (2011). Analysis of hydrogen in olivine by SIMS: Evaluation of standards and protocol. American Mineralogist, 96(11–12), 1725–1741. https://doi.org/10.2138/am.2011.3810
Nyquist, L., Bogard, D., Shih, C.-Y., Greshake, A., Stöffler, D., & Eugster, O. (2001). Ages and geologic histories of Martian meteorites. Space Science Reviews, 96(1), 105–164. https://doi.org/10.1023/A:1011993105172
O’Brien, Á. C., Hallis, L. J., Regnault, C., Morrison, D., Blackburn, G., Steele, A., Daly, L., Tait, A., Tremblay, M. M., Telenko, D. E., & others. (2022). Using Organic Contaminants to Constrain the Terrestrial Journey of the Martian Meteorite Lafayette. Astrobiology, 22(11), 1351–1362.
Okazaki, R., Nagao, K., Imae, N., & Kojima, H. (2003). Noble gas signatures of Antarctic nakhlites, Yamato (Y) 000593, Y000749, and Y000802. Antarctic Meteorite Research, 16, 58–79. https://doi.org/10.15094/00006026
Pan, Y., & Fleet, M. E. (2002). Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Reviews in Mineralogy and Geochemistry, 48(1), 13–49. https://doi.org/10.2138/rmg.2002.48.2
Peslier, A., Hervig, R., Yang, S., Humayun, M., Barnes, J., Irving, A., & Brandon, A. (2019). Determination of the water content and D/H ratio of the martian mantle by unraveling degassing and crystallization effects in nakhlites. Geochimica et Cosmochimica Acta, 266, 382–415. https://doi.org/10.1016/j.gca.2019.04.023
Piani, L., Marrocchi, Y., Rigaudier, T., Vacher, L. G., Thomassin, D., & Marty, B. (2020). Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science, 369(6507), 1110–1113. https://doi.org/10.1126/science.aba1948
Rider-Stokes, B. G., Stephant, A., Anand, M., Franchi, I. A., Zhao, X., White, L. F., Yamaguchi, A., Greenwood, R. C., & Jackson, S. L. (2024). Evidence against water delivery by impacts within 10 million years of planetesimal formation. Earth and Planetary Science Letters, 642, 118860. https://doi.org/10.1016/j.epsl.2024.118860
Shearer, C., Messenger, S., Sharp, Z., Burger, P., Nguyen, A., & McCubbin, F. (2018). Distinct chlorine isotopic reservoirs on Mars. Implications for character, extent and relative timing of crustal interactions with mantle-derived magmas, evolution of the martian atmosphere, and the building blocks of an early Mars. Geochimica et Cosmochimica Acta, 234, 24–36. https://doi.org/10.1016/j.gca.2018.04.034
Stephant, A., Garvie, L. A. J., Mane, P., Hervig, R., & Wadhwa, M. (2018). Terrestrial exposure of a fresh Martian meteorite causes rapid changes in hydrogen isotopes and water concentrations. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-30807-w
Stephant, A., Wadhwa, M., Hervig, R., Bose, M., Zhao, X., Barrett, T., Anand, M., & Franchi, I. (2021). A deuterium-poor water reservoir in the asteroid 4 Vesta and the inner solar system. Geochimica et Cosmochimica Acta, 297, 203–219. https://doi.org/10.1016/j.gca.2021.01.004
Stephant, A., Zhao, X., Anand, M., Davidson, J., Carli, C., Cuppone, T., Pratesi, G., & Franchi, I. (2023). Hydrogen in acapulcoites and lodranites: A unique source of water for planetesimals in the inner Solar System. Earth and Planetary Science Letters, 615, 118202. https://doi.org/10.1016/j.epsl.2023.118202
Tartèse, R., Anand, M., McCubbin, F. M., Elardo, S. M., Shearer, C. K., & Franchi, I. A. (2014). Apatites in lunar KREEP basalts: The missing link to understanding the H isotope systematics of the Moon. Geology, 42(4), 363–366. https://doi.org/10.1130/G35288.1
Treiman, A. H. (2005). The nakhlite meteorites: Augite-rich igneous rocks from Mars. Geochemistry, 65(3), 203–270. https://doi.org/10.1016/j.chemer.2005.01.004
Udry, A., & Day, J. M. (2018). 1.34 billion-year-old magmatism on Mars evaluated from the co-genetic nakhlite and chassignite meteorites. Geochimica et Cosmochimica Acta, 238, 292–315. https://doi.org/10.1016/j.gca.2018.07.006
Udry, A., Howarth, G. H., Herd, C. D. K., Day, J. M. D., Lapen, T. J., & Filiberto, J. (2020). What Martian Meteorites Reveal About the Interior and Surface of Mars. Journal of Geophysical Research: Planets, 125(12), e2020JE006523. https://doi.org/10.1029/2020JE006523
Udry, A., Ostwald, A. M., Day, J. M., & Hallis, L. J. (2025). Fundamental constraints and questions from the study of martian meteorites and the need for returned samples. Proceedings of the National Academy of Sciences, 122(2), e2404254121. https://doi.org/10.1073/pnas.2404254121
Usui, T., Alexander, C. M., Wang, J., Simon, J. I., & Jones, J. H. (2012). Origin of water and mantle–crust interactions on Mars inferred from hydrogen isotopes and volatile element abundances of olivine-hosted melt inclusions of primitive shergottites. Earth and Planetary Science Letters, 357, 119–129. https://doi.org/10.1016/j.epsl.2012.09.008
Usui, T., Alexander, C. M., Wang, J., Simon, J. I., & Jones, J. H. (2015). Meteoritic evidence for a previously unrecognized hydrogen reservoir on Mars. Earth and Planetary Science Letters, 410, 140–151. https://doi.org/10.1016/j.epsl.2014.11.022
Villanueva, G., Mumma, M., Novak, R., Käufl, H., Hartogh, P., Encrenaz, T., Tokunaga, A., Khayat, A., & Smith, M. (2015). Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs. Science, 348(6231), 218–221. https://doi.org/10.1126/science.aaa3630
Webster, C. R., Mahaffy, P. R., Flesch, G. J., Niles, P. B., Jones, J. H., Leshin, L. A., Atreya, S. K., Stern, J. C., Christensen, L. E., Owen, T., & others. (2013). Isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere. Science, 341(6143), 260–263. https://doi.org/10.1126/science.1237961
Williams, J., Shearer, C., Sharp, Z., Burger, P., McCubbin, F., Santos, A., Agee, C., & McKeegan, K. (2016). The chlorine isotopic composition of Martian meteorites 1: Chlorine isotope composition of Martian mantle and crustal reservoirs and their interactions. Meteoritics & Planetary Science, 51(11), 2092–2110. https://doi.org/10.1111/maps.12647

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2025 Lydia J. Hallis, Evangelos Christou , Jemma Davidson, Andrea G. Distel, Richard L. Hervig

