Hopanoid distributions differ in mineral soils and peat: a re-evaluation of hopane-based pH proxies
Read Online
PDF
Data, Code, and Outputs

Supplementary Files

Supplementary Material

Keywords

Biomarkers
Hopanoids
Bacteria
Terrestrial
Paleoclimate

How to Cite

Inglis, G. N., De Jonge, C., Häggi, C., Feakins, S. J., Guo, J., Dercon, G., Bertassoli Jr., D. J., Akabane, T. K., Bentley, M. R., Beverly, E., Naafs, B. D. A., & Pancost, R. D. (2025). Hopanoid distributions differ in mineral soils and peat: a re-evaluation of hopane-based pH proxies. Advances in Geochemistry and Cosmochemistry, 1(2), 755. https://doi.org/10.33063/agc.v1i2.755

Abstract

Hopanoids are produced by bacteria and are commonly found in terrestrial and marine environments. In modern environments, hopanoids mostly occur in the biological 17β,21β(H) configuration. Over geological time (106 to 108 years), thermal degradation changes their stereochemistry to the thermally mature 17α,21β(H) configuration. However, in modern acidic peat-forming environments, the ‘thermally mature’ C31 17α,21β(H)-homohopane dominates over the biological ββ stereoisomer, with an increase in the relative abundance of the αβ stereoisomer at lower pH. Based on this pH dependency, hopane isomerisation ratios have been used to reconstruct pH in ancient peat-forming environments. However, the environmental controls on hopane isomerisation remain poorly constrained and it is unclear whether this proxy is also applicable in mineral soils. Here, we analysed hopane distributions in mineral soils characterised by a wide range of mean annual temperature and pH. We show that mineral soils are dominated by diploptene, an unsaturated C30 hopanoid synthesised by a wide range of bacteria. In our soil dataset, there are relatively few thermally mature αβ hopanes – even within acidic mineral soils – and there is no relationship between hopane isomerisation ratios and pH. We propose that mineral protection in these soil environments selectively protects hopanoids from rapid degradation and subsequent isomerisation in modern samples. This provides a plausible explanation for the lack of 17α,21β hopanes in modern acidic mineral soil and suggests that the C31 hopane ββ/(αβ + ββ) should only be employed as a quantitative pH proxy in peats. Moving forward, we propose that hopane isomerisation ratios can help fingerprint the delivery of (acidic) peat into the marine realm and build upon other biomarker-based proxies developed to trace the input of terrestrial OC into the marine realm.

https://doi.org/10.33063/agc.v1i2.755
Read Online
PDF
Data, Code, and Outputs

References

Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Springer Netherlands. https://doi.org/10.1007/978-94-009-4109-0

Angst, G., Mueller, K. E., Nierop, K. G. J., & Simpson, M. J. (2021). Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biology and Biochemistry, 156, 108189. https://doi.org/10.1016/j.soilbio.2021.108189

Arveby, AgnetaS., & Huss-Danell, K. (1988). Presence and dispersal of infective Frankia in peat and meadow soils in Sweden. Biology and Fertility of Soils, 6(1). https://doi.org/10.1007/bf00257918

Ausec, L., Kraigher, B., & Mandic-Mulec, I. (2009). Differences in the activity and bacterial community structure of drained grassland and forest peat soils. Soil Biology and Biochemistry, 41(9), 1874–1881. https://doi.org/10.1016/j.soilbio.2009.06.010

Berti, G., & Bottari, F. (1968). Constituents of ferns. In L. Reinhold & Y. Livschitz (Eds.), Progress in phytochemistry (Vol. 1, pp. 589–685). Interscience.

Beverly, E. J., Levin, N. E., Passey, B. H., Aron, P. G., Yarian, D. A., Page, M., & Pelletier, E. M. (2021). Triple oxygen and clumped isotopes in modern soil carbonate along an aridity gradient in the Serengeti, Tanzania. Earth and Planetary Science Letters, 567, 116952. https://doi.org/10.1016/j.epsl.2021.116952

Bradley, A. S., Pearson, A., Sáenz, J. P., & Marx, C. J. (2010). Adenosylhopane: The first intermediate in hopanoid side chain biosynthesis. Organic Geochemistry, 41(10), 1075–1081. https://doi.org/10.1016/j.orggeochem.2010.07.003

Brady, N. C., & Weil, R. R. (2008). The nature and properties of soils (14th ed.). Prentice Hall.

Contreras, L., Pross, J., Bijl, P. K., Koutsodendris, A., Raine, J. I., van de Schootbrugge, B., & Brinkhuis, H. (2013). Early to Middle Eocene vegetation dynamics at the Wilkes Land Margin (Antarctica). Review of Palaeobotany and Palynology, 197, 119–142. https://doi.org/10.1016/j.revpalbo.2013.05.009

De Jonge, C., Guo, J., Hällberg, P., Griepentrog, M., Rifai, H., Richter, A., Ramirez, E., Zhang, X., Smittenberg, R. H., Peterse, F., Boeckx, P., & Dercon, G. (2024). The impact of soil chemistry, moisture and temperature on branched and isoprenoid GDGTs in soils: A study using six globally distributed elevation transects. Organic Geochemistry, 187, 104706. https://doi.org/10.1016/j.orggeochem.2023.104706

Ensminger, A. (1977). Evolution de composés polycycliques sédimentaires: L’Université Louis Pasteur de Strasbourg.

Farrimond, P., Taylor, A., & Telnæs, N. (1998). Biomarker maturity parameters: the role of generation and thermal degradation. Organic Geochemistry, 29(5–7), 1181–1197. https://doi.org/10.1016/s0146-6380(98)00079-5

Georgiou, K., Jackson, R. B., Vindušková, O., Abramoff, R. Z., Ahlström, A., Feng, W., Harden, J. W., Pellegrini, A. F. A., Polley, H. W., Soong, J. L., Riley, W. J., & Torn, M. S. (2022). Global stocks and capacity of mineral-associated soil organic carbon. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-31540-9

Gies, H., Hagedorn, F., Lupker, M., Montluçon, D., Haghipour, N., van der Voort, T. S., & Eglinton, T. I. (2021). Millennial-age glycerol dialkyl glycerol tetraethers (GDGTs) in forested mineral soils: ¹⁴C-based evidence for stabilization of microbial necromass. Biogeosciences, 18(1), 189–205. https://doi.org/10.5194/bg-18-189-2021

Häggi, C., Bertassoli, D. J., Akabane, T. K., So, R. T., Sawakuchi, A. O., Chiessi, C. M., Mendes, V. R., Jaramillo, C. A., & Feakins, S. J. (2024). Using Multi‐Homolog Plant‐Wax Carbon Isotope Compositions to Reconstruct Tropical Vegetation Types. Journal of Geophysical Research: Biogeosciences, 129(4). https://doi.org/10.1029/2023jg007946

Häggi, Christoph, Naafs, B. D. A., Silvestro, D., Bertassoli, D. J., Akabane, T. K., Mendes, V. R., Sawakuchi, A. O., Chiessi, C. M., Jaramillo, C. A., & Feakins, S. J. (2023). GDGT distribution in tropical soils and its potential as a terrestrial paleothermometer revealed by Bayesian deep-learning models. Geochimica et Cosmochimica Acta, 362, 41–64. https://doi.org/10.1016/j.gca.2023.09.014

Hopmans, E. C., Weijers, J. W. H., Schefuß, E., Herfort, L., Sinninghe Damsté, J. S., & Schouten, S. (2004). A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth and Planetary Science Letters, 224(1–2), 107–116. https://doi.org/10.1016/j.epsl.2004.05.012

Huang, X., Meyers, P. A., Xue, J., Gong, L., Wang, X., & Xie, S. (2015). Environmental factors affecting the low temperature isomerization of homohopanes in acidic peat deposits, central China. Geochimica et Cosmochimica Acta, 154, 212–228. https://doi.org/10.1016/j.gca.2015.01.031

Inglis, G. N. (2025). Hopanoid distributions differ in mineral soils and peat: a re-evaluation of hopane-based pH proxies [Dataset]. OSF. https://doi.org/10.17605/OSF.IO/3CNJZ

Inglis, G. N., Collinson, M. E., Riegel, W., Wilde, V., Robson, B. E., Lenz, O. K., & Pancost, R. D. (2015). Ecological and biogeochemical change in an early Paleogene peat-forming environment: Linking biomarkers and palynology. Palaeogeography, Palaeoclimatology, Palaeoecology, 438, 245–255. https://doi.org/10.1016/j.palaeo.2015.08.001

Inglis, G. N., Farnsworth, A., Collinson, M. E., Carmichael, M. J., Naafs, B. D. A., Lunt, D. J., Valdes, P. J., & Pancost, R. D. (2019). Terrestrial environmental change across the onset of the PETM and the associated impact on biomarker proxies: A cautionary tale. Global and Planetary Change, 181, 102991. https://doi.org/10.1016/j.gloplacha.2019.102991

Inglis, G. N., Naafs, B. D. A., Zheng, Y., McClymont, E. L., Evershed, R. P., & Pancost, R. D. (2018). Distributions of geohopanoids in peat: Implications for the use of hopanoid-based proxies in natural archives. Geochimica et Cosmochimica Acta, 224, 249–261. https://doi.org/10.1016/j.gca.2017.12.029

Inglis, G. N., Toney, J. L., Zhu, J., Poulsen, C. J., Röhl, U., Jamieson, S. S. R., Pross, J., Cramwinckel, M. J., Krishnan, S., Pagani, M., Bijl, P. K., & Bendle, J. (2022). Enhanced Terrestrial Carbon Export From East Antarctica During the Early Eocene. Paleoceanography and Paleoclimatology, 37(2). https://doi.org/10.1029/2021pa004348

Kusch, S., & Rush, D. (2022). Revisiting the precursors of the most abundant natural products on Earth: A look back at 30+ years of bacteriohopanepolyol (BHP) research and ahead to new frontiers. Organic Geochemistry, 172, 104469. https://doi.org/10.1016/j.orggeochem.2022.104469

Lauretano, V., Kennedy-Asser, A. T., Korasidis, V. A., Wallace, M. W., Valdes, P. J., Lunt, D. J., Pancost, R. D., & Naafs, B. D. A. (2021). Eocene to Oligocene terrestrial Southern Hemisphere cooling caused by declining pCO₂. Nature Geoscience, 14(9), 659–664. https://doi.org/10.1038/s41561-021-00788-z

Loisel, J., Gallego-Sala, A. V., Amesbury, M. J., Magnan, G., Anshari, G., Beilman, D. W., Benavides, J. C., Blewett, J., Camill, P., Charman, D. J., Chawchai, S., Hedgpeth, A., Kleinen, T., Korhola, A., Large, D., Mansilla, C. A., Müller, J., van Bellen, S., West, J. B., Yu, Z., Bubier, J. L., Garneau, M., Moore, T., Sannel, A. B. K., Page, S., Väliranta, M., Bechtold, M., Brovkin, V., Cole, L. E. S., Chanton, J. P., Christensen, T. R., Davies, M. A., De Vleeschouwer, F., Finkelstein, S. A., Frolking, S., Gałka, M., Gandois, L., Girkin, N., Harris, L. I., Heinemeyer, A., Hoyt, A. M., Jones, M. C., Joos, F., Juutinen, S., Kaiser, K., Lacourse, T., Lamentowicz, M., Larmola, T., Leifeld, J., Lohila, A., Milner, A. M., Minkkinen, K., Moss, P., Naafs, B. D. A., Nichols, J., O’Donnell, J., Payne, R., Philben, M., Piilo, S., Quillet, A., Ratnayake, A. S., Roland, T. P., Sjögersten, S., Sonnentag, O., Swindles, G. T., Swinnen, W., Talbot, J., Treat, C., Valach, A. C., & Wu, J. (2021). Expert assessment of future vulnerability of the global peatland carbon sink. Nature Climate Change, 11(1), 70–77. https://doi.org/10.1038/s41558-020-00944-0

Mackenzie, A. S., Patience, R. L., Maxwell, J. R., Vandenbroucke, M., & Durand, B. (1980). Molecular parameters of maturation in the Toarcian shales, Paris Basin, France—I. Changes in the configurations of acyclic isoprenoid alkanes, steranes and triterpanes. Geochimica et Cosmochimica Acta, 44(11), 1709–1721. https://doi.org/10.1016/0016-7037(80)90222-7

Moldowan, J. M., Fago, F. J., Carlson, R. M. K., Young, D. C., an Duvne, G., Clardy, J., Schoell, M., Pillinger, C. T., & Watt, D. S. (1991). Rearranged hopanes in sediments and petroleum. Geochimica et Cosmochimica Acta, 55(11), 3333–3353. https://doi.org/10.1016/0016-7037(91)90492-n

Naafs, B. D. A., Inglis, G. N., Zheng, Y., Amesbury, M. J., Biester, H., Bindler, R., Blewett, J., Burrows, M. A., del Castillo Torres, D., Chambers, F. M., Cohen, A. D., Evershed, R. P., Feakins, S. J., Gałka, M., Gallego-Sala, A., Gandois, L., Gray, D. M., Hatcher, P. G., Honorio Coronado, E. N., Hughes, P., Huguet, A., Könönen, M., Laggoun-Défarge, F., Lähteenoja, O., Lamentowicz, M., Marchant, R., McClymont, E., Pontevedra-Pombal, X., Ponton, C., Pourmand, A., Rizzuti, A., Rochefort, L., Schellekens, J., De Vleeschouwer, F., & Pancost, R. D. (2017). Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids. Geochimica et Cosmochimica Acta, 208, 285–301. https://doi.org/10.1016/j.gca.2017.01.038

Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Borman, T., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H. B. A., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M. O., Lahti, L., Martino, C., McGlinn, D., Ouellette, M. H., Ribeiro Cunha, E., Smith, T., Stier, A., Ter Braak, C. J., & Weedon, J. (2001). vegan: Community Ecology Package [Software]. In CRAN: Contributed Packages. The R Foundation. https://doi.org/10.32614/cran.package.vegan

Ourisson, G., & Albrecht, P. (1992). Hopanoids. 1. Geohopanoids: the most abundant natural products on Earth? Accounts of Chemical Research, 25(9), 398–402. https://doi.org/10.1021/ar00021a003

Pancost, R. D., Baas, M., van Geel, B., & Sinninghe Damsté, J. S. (2003). Response of an ombrotrophic bog to a regional climate event revealed by macrofossil, molecular and carbon isotopic data. The Holocene, 13(6), 921–932. https://doi.org/10.1191/0959683603hl674rp

Peaple, M. D., Beverly, E. J., Garza, B., Baker, S., Levin, N. E., Tierney, J. E., Häggi, C., & Feakins, S. J. (2022). Identifying the drivers of GDGT distributions in alkaline soil profiles within the Serengeti ecosystem. Organic Geochemistry, 169, 104433. https://doi.org/10.1016/j.orggeochem.2022.104433

Quirk, M. M., Wardroper, A. M. K., Wheatley, R. E., & Maxwell, J. R. (1984). Extended hopanoids in peat environments. Chemical Geology, 42(1–4), 25–43. https://doi.org/10.1016/0009-2541(84)90003-2

Ries-Kautt, M., & Albrecht, P. (1989). Hopane-derived triterpenoids in soils. Chemical Geology, 76(1–2), 143–151. https://doi.org/10.1016/0009-2541(89)90133-2

Robinson, S. A., Ruhl, M., Astley, D. L., Naafs, B. D. A., Farnsworth, A. J., Bown, P. R., Jenkyns, H. C., Lunt, D. J., O’Brien, C., Pancost, R. D., & Markwick, P. J. (2017). Early Jurassic North Atlantic sea‐surface temperatures from TEX86 palaeothermometry. Sedimentology, 64(1), 215–230. https://doi.org/10.1111/sed.12321

Rodier, C., Llopiz, P., & Neunlist, S. (1999). C32 and C34 hopanoids in recent sediments of European lakes: novel intermediates in the early diagenesis of biohopanoids. Organic Geochemistry, 30(7), 713–716. https://doi.org/10.1016/S0146-6380(99)00045-5

Rohmer, M., Bouvier-Nave, P., & Ourisson, G. (1984). Distribution of Hopanoid Triterpenes in Prokaryotes. Microbiology, 130(5), 1137–1150. https://doi.org/10.1099/00221287-130-5-1137

Rosa‐Putra, S., Nalin, R., Domenach, A., & Rohmer, M. (2001). Novel hopanoids from Frankia spp. and related soil bacteria: Squalene cyclization and significance of geological biomarkers revisited. European Journal of Biochemistry, 268(15), 4300–4306. https://doi.org/10.1046/j.1432-1327.2001.02348.x

Sáenz, J. P., Grosser, D., Bradley, A. S., Lagny, T. J., Lavrynenko, O., Broda, M., & Simons, K. (2015). Hopanoids as functional analogues of cholesterol in bacterial membranes. Proceedings of the National Academy of Sciences, 112(38), 11971–11976. https://doi.org/10.1073/pnas.1515607112

Schaaff, V., Grossi, V., Makou, M., Garcin, Y., Deschamps, P., Sebag, D., Ngounou Ngatcha, B., & Ménot, G. (2024). Constraints on hopanes and brGDGTs as pH proxies in peat. Geochimica et Cosmochimica Acta, 373, 342–354. https://doi.org/10.1016/j.gca.2024.03.034

Sessions, A. L., Zhang, L., Welander, P. V., Doughty, D., Summons, R. E., & Newman, D. K. (2013). Identification and quantification of polyfunctionalized hopanoids by high temperature gas chromatography–mass spectrometry. Organic Geochemistry, 56, 120–130. https://doi.org/10.1016/j.orggeochem.2012.12.009

Shunthirasingham, C., & Simpson, M. J. (2006). Investigation of bacterial hopanoid inputs to soils from Western Canada. Applied Geochemistry, 21(6), 964–976. https://doi.org/10.1016/j.apgeochem.2006.03.007

Sinninghe Damsté, J. S., Schouten, S., & Volkman, J. K. (2014). C₂₇–C₃₀ neohop-13(18)-enes and their saturated and aromatic derivatives in sediments: Indicators for diagenesis and water column stratification. Geochimica et Cosmochimica Acta, 133, 402–421. https://doi.org/10.1016/j.gca.2014.03.008

Slowikowski, K. (2024). ggrepel: Automatically Position Non-Overlapping Text Labels with “ggplot2” [Software]. In CRAN: Contributed Packages. The R Foundation. https://doi.org/10.32614/cran.package.ggrepel

Smittenberg, R. H., Pancost, R. D., Hopmans, E. C., Paetzel, M., & Sinninghe Damsté, J. S. (2004). A 400-year record of environmental change in an euxinic fjord as revealed by the sedimentary biomarker record. Palaeogeography, Palaeoclimatology, Palaeoecology, 202(3–4), 331–351. https://doi.org/10.1016/s0031-0182(03)00642-4

Spencer-Jones, C. L., Wagner, T., Dinga, B. J., Schefuß, E., Mann, P. J., Poulsen, J. R., Spencer, R. G. M., Wabakanghanzi, J. N., & Talbot, H. M. (2015). Bacteriohopanepolyols in tropical soils and sediments from the Congo River catchment area. Organic Geochemistry, 89–90, 1–13. https://doi.org/10.1016/j.orggeochem.2015.09.003

Synnott, D. P., Schwark, L., Dewing, K., Percy, E. L., & Pedersen, P. K. (2021). The diagenetic continuum of hopanoid hydrocarbon transformation from early diagenesis into the oil window. Geochimica et Cosmochimica Acta, 308, 136–156. https://doi.org/10.1016/j.gca.2021.06.005

Talbot, H. M., & Farrimond, P. (2007). Bacterial populations recorded in diverse sedimentary biohopanoid distributions. Organic Geochemistry, 38(8), 1212–1225. https://doi.org/10.1016/j.orggeochem.2007.04.006

Talbot, H. M., McClymont, E. L., Inglis, G. N., Evershed, R. P., & Pancost, R. D. (2016). Origin and preservation of bacteriohopanepolyol signatures in Sphagnum peat from Bissendorfer Moor (Germany). Organic Geochemistry, 97, 95–110. https://doi.org/10.1016/j.orggeochem.2016.04.011

van den Boogaart, K. G., & Tolosana-Delgado, R. (2008). “Compositions”: A unified R package to analyze compositional data. Computers & Geosciences, 34(4), 320–338. https://doi.org/10.1016/j.cageo.2006.11.017

Watson, D. F., & Farrimond, P. (2000). Novel polyfunctionalised geohopanoids in a recent lacustrine sediment (Priest Pot, UK). Organic Geochemistry, 31(11), 1247–1252. https://doi.org/10.1016/S0146-6380(00)00148-0

Weijers, J. W. H., Schouten, S., Schefuß, E., Schneider, R. R., & Sinninghe Damsté, J. S. (2009). Disentangling marine, soil and plant organic carbon contributions to continental margin sediments: A multi-proxy approach in a 20,000 year sediment record from the Congo deep-sea fan. Geochimica et Cosmochimica Acta, 73(1), 119–132. https://doi.org/10.1016/j.gca.2008.10.016

Wickham, H., Chung, W., & Girlich, M. (2019). scales: Scale Functions for Visualization [Software]. In CRAN: Contributed Packages. The R Foundation. https://doi.org/10.32614/cran.package.scales

Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2023). dplyr: A Grammar of Data Manipulation [Software]. In CRAN: Contributed Packages. The R Foundation. https://doi.org/10.32614/CRAN.package.dplyr

Wilke, C. O. (2017). ggridges: Ridgeline Plots in “ggplot2” [Software]. In CRAN: Contributed Packages. The R Foundation. https://doi.org/10.32614/cran.package.ggridges

Witkowski, C. R., Lauretano, V., Farnsworth, A., Li, S., Li, S.-H., Mayser, J. P., Naafs, B. D. A., Spicer, R. A., Su, T., Tang, H., Zhou, Z.-K., Valdes, P. J., & Pancost, R. D. (2023). Dynamic environment but no temperature change since the late Paleogene at Lühe Basin (Yunnan, China). EGUsphere Preprint Repository. https://doi.org/10.5194/egusphere-2023-373

Zhang, D., Beverly, E. J., Levin, N. E., Vidal, E., Matia, Y., & Feakins, S. J. (2021). Carbon isotopic composition of plant waxes, bulk organics and carbonates from soils of the Serengeti grasslands. Geochimica et Cosmochimica Acta, 311, 316–331. https://doi.org/10.1016/j.gca.2021.07.005

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Gordon N. Inglis, Cindy De Jonge, Christoph Häggi, Sarah J. Feakins, Jingjing Guo, Gerd Dercon, Dailson J. Bertassoli Jr., Thomas K. Akabane, McKenzie R. Bentley, Emily Beverly, B. David A. Naafs, Richard D. Pancost