Abstract
The possibility that natural H2, or ‘white H2’, can be of economic interest relies on (1) the occurrence of large H2 gas accumulations similar in size to oil and gas fields and/or on (2) natural H2 production processes that are sufficiently efficient, locally, to lead to recharge rates that are commensurable with economical extraction rates. This latter possibility is investigated in the reference case of a deep aquifer located in an intracratonic sedimentary basin. Various production reactions are considered which involve RedOx reactions among Fe-bearing rock-forming minerals. The production kinetics of radiolytic H2 as a function of depth is also modeled. H2 consumption by microbial activity is implemented. It appears that olivine serpentinisation is the only process capable of generating H2 concentrations high enough to reach H2 gas saturation in the aquifer and thus generate H2-rich gas accumulation. The combination of a deep H2 source (> 7,000 m, i.e., T> 240°C) and a shallow accumulation (< few hundred meters) turns out to be the only possible configuration for such an accumulation. Estimated H2 accumulation rates do not however exceed a few tons of H2 per year, which is far from being an economical value estimated to a few kton per year at least. In conclusion, in the case of a deep aquifer in an intracratonic setting and considering water-rock interactions as the main source process, natural H2 can hardly be considered renewable on an industrial timescale.
References
Abrajano T, Sturchio N, Bohlke J, Lyon G, Poreda R, Stevens C (1988). Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: Deep or shallow origin? Chemical Geology 71(1): 211–222. https://doi.org/10.1016/0009-2541(88)90116-7.
Ahmed AH, Arai S, Attia AK (2001). Petrological characteristics of podiform chromitites and associated peridotites of the Pan African Proterozoic ophiolite complexes of Egypt. Mineralium Deposita 36: 72–84. https://doi.org/10.1007/s001260050287.
Ahmed T (2018). Reservoir Engineering Handbook. Gulf Professional Publishing, 5th edn.
Aitken MJ (1985). Thermoluminescence dating: Past progress and future trends. Nuclear Tracks and Radiation Measurements (1982) 10(1): 3–6. https://doi.org/10.1016/0735-245X(85)90003-1.
Aquino KA, Perez Ad, Juego CMM, Tagle YGM, Leong JAM, Codillo EA (2025). High hydrogen outgassing from an ophiolite-hosted seep in Zambales, Philippines. International Journal of Hydrogen Energy 105: 360–366. https://doi.org/10.1016/j.ijhydene.2025.01.251.
Aresta M, Dibenedetto A (2024). Merging the Green-H2 production with Carbon Recycling for stepping towards the Carbon Cyclic Economy. Journal of CO2 Utilization 80: 102688. https://doi.org/10.1016/j.jcou.2024.102688.
Bagnoud A, Chourey K, Hettich RL, de Bruijn I, Andersson AF, Leupin OX, Schwyn B, Bernier-Latmani R (2016). Reconstructing a hydrogen-drive nmicrobial metabolic network in Opalinus Clayrock. Nature Communications 7(1): 12770. https://doi.org/10.1038/ncomms12770.
Beard JS, Frost BR (2017). The stoichiometric effects of ferric iron substitutions in serpentine from microprobe data. International Geology Review 59(5-6): 541–547. https://doi.org/10.1080/00206814.2016.1197803.
Blay-Roger R, Bach W, Bobadilla LF, Reina TR, Odriozola JA, Amils R, Blay V (2024). Natural hydrogen in the energy transition: Fundamentals, promise, and enigmas. Renewable and Sustainable Energy Reviews 189: 113888. https://doi.org/10.1016/j.rser.2023.113888.
Bouquet A, Glein CR, Wyrick D, Waite JH (2017). Alternative Energy: Production of H2 by Radiolysis of Water in the Rocky Cores of Icy Bodies. The Astrophysical Journal Letters 840(1): L8. https://doi.org/10.3847/2041-8213/aa6d56.
Brantley SL, Mellott NP (2000). Surface area and porosity of primary silicate minerals. American Mineralogist 85(11-12): 1767–1783. https://doi.org/10.2138/am-2000-11-1220.
Breznak JA, Switzer JM (1986). Acetate Synthesis from H2 plus CO2 by Termite Gut Microbes. Applied and Environmental Microbiology 52(4): 623–630. https://doi.org/10.1128/aem.52.4.623-630.1986.
Cannat M, Fontaine F, EscartíN J (2010). Serpentinization and Associated Hydrogen And Methane Fluxes at Slow Spreading Ridges. In Diversity Of Hydrothermal Systems On Slow Spreading Ocean Ridges, pp. 241–264. American Geophysical Union (AGU). https://doi.org/10.1029/2008GM000760.
Carlin W, Malvoisin B, Brunet F, Lanson B, Findling N, Lanson M, Fargetton T, Jeannin L, Lhote O (2024). Kinetics of low-temperature H2 production in ultramafic rocks by ferroan brucite oxidation. Geochemical Perspectives Letters 29: 27–32. https://doi.org/10.7185/geochemlet.2408.
Charlou J, Donval J, Fouquet Y, Jean-Baptiste P, Holm N (2002). Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36° 14’ N, MAR). Chemical geology 191(4): 345–359. https://doi.org/10.1016/S0009-2541(02)00134-1.
Charlou JL, Donval JP, Konn C, Ondréas H, Fouquet Y, Jean-Baptiste P, Fourré E (2010). High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge. Geophysical Monograph Series 188: 265–296. https://doi.org/10.1029/2008GM000752.
Connolly, J. A. D. (2005). Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters 236: 524–541, https://doi.org/10.1016/j.epsl.2005.04.033.
Conrad R (1996). Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiological reviews 60(4): 609–640. https://doi.org/10.1128/mr.60.4.609-640.1996.
Conrad R, Seiler W (1981). Decomposition of atmospheric hydrogen by soil microorganisms and soil enzymes. Soil Biology and Biochemistry 13(1): 43–49. https://doi.org/10.1016/0038-0717(81)90101-2.
Constant P, Poissant L, Villemur R (2008). Isolation of Streptomyces sp. PCB7, the first microorganism demonstrating high-affinity uptake of tropospheric H2. The ISME Journal 2(10): 1066–1076. https://doi.org/10.1038/ismej.2008.59.
Corre M, Brunet F, Schwartz S, Gautheron C, Agranier A, Lesimple S (2023). Quaternary low-temperature serpentinization and carbonation in the New Caledonia ophiolite. Scientific Reports 13(1): 19413. https://doi.org/10.1038/s41598-023-46691-y.
Derwent R, Simmonds P, O’Doherty S, Manning A, Collins W, Stevenson D (2006). Global environmental impacts of the hydrogen economy. International Journal of Nuclear Hydrogen Production and Applications 1(1): 57–67. https://doi.org/10.1504/IJNHPA.2006.009869.
Dick HJ (1974). Terrestrial nickel-iron from the Josephine peridotite, its geologic occurrence, associations, and origin. Earth and Planetary Science Letters 24(2): 291–298. https://doi.org/10.1016/0012-821X(74)90107-1.
Dohrmann AB, Krüger M (2023). Microbial H2 Consumption by a Formation Fluid from a Natural Gas Field at High-Pressure Conditions Relevant for Underground H2 Storage. Environmental Science & Technology 57(2): 1092–1102. https://doi.org/10.1021/acs.est.2c07303.
Dong Z, Layzell D (2001). H2 oxidation, O2 uptake and CO2 fixation in hydrogen treated soils. Plant and Soil 229(1): 1–12. https://doi.org/10.1023/A:1004810017490.
Dubessy J, Pagel M, Beny JM, Christensen H, Hickel B, Kosztolanyi C, Poty B (1988). Radiolysis evidenced by H2-O2 and H2-bearing fluid inclusions in three uranium deposits. Geochimica et Cosmochimica Acta 52(5): 1155–1167. https://doi.org/10.1016/0016-7037(88)90269-4.
Ehhalt DH, Rohrer F (2009). The tropospheric cycle of H2: a critical review. Tellus B: Chemical and Physical Meteorology 61(3): 500–535. https://doi.org/10.1111/j.1600-0889.2009.00416.x.
Ellis GS, Gelman SE (2024). Model predictions of global geologic hydrogen resources. Science Advances 10(50): eado0955. https://doi.org/10.1126/sciadv.ado0955.
Evans, K., Powell, R. and Frost, B. (2013). Using equilibrium thermodynamics in the study of metasomatic alteration, illustrated by an application to serpentinites. Lithos 168-169: 67–84, https://doi.org/10.1016/j.lithos.2013.01.016.
Evans, K. A., Reddy, S. M., Tomkins, A. G., Crossley, R. J. and Frost, B. R. (2017). Effects of geodynamic setting on the redox state of fluids released by subducted mantle lithosphere. Lithos 278-281: 26–42, https://doi.org/10.1016/J.LITHOS.2016.12.023.
Fontecave M, Candel S, Poinsot T (2024). L’hydrogène aujourd’hui et demain. Tech. rep., Académie des sciences (France). https://doi.org/10.62686/5.
Foustoukos DI, Houghton JL, Seyfried WE, Sievert SM, Cody GD (2011). Kinetics of H2–O2–H2O redox equilibria and formation of metastable H2O2 under low temperature hydrothermal conditions. Geochimica et Cosmochimica Acta 75(6): 1594–1607. https://doi.org/10.1016/j.gca.2010.12.020.
Frery E, Langhi L, Maison M, Moretti I (2021). Natural hydrogen seeps identified in the North Perth Basin, Western Australia. International Journal of Hydrogen Energy 46(61): 31158–31173. https://doi.org/10.1016/j.ijhydene.2021.07.023.
Gaucher EC (2020). New Perspectives in the Industrial Exploration for Native Hydrogen. Elements 16(1): 8–9. https://doi.org/10.2138/gselements.16.1.8.
Geymond U, Briolet T, Combaudon V, Sissmann O, Martinez I, Duttine M, Moretti I (2023). Reassessing the role of magnetite during natural hydrogen generation. Frontiers in Earth Science 11. https://doi.org/10.3389/feart.2023.1169356.
Geymond U, Ramanaidou E, Lévy D, Ouaya A, Moretti I (2022). Can Weathering of Banded Iron Formations Generate Natural Hydrogen? Evidence from Australia, Brazil and South Africa. Minerals 12(2): 163. https://doi.org/10.3390/min12020163.
Greening C, Constant P, Hards K, Morales SE, Oakeshott JG, Russell RJ, Taylor MC, Berney M, Conrad R, Cook GM (2015). Atmospheric Hydrogen Scavenging: from Enzymes to Ecosystems. Applied and Environmental Microbiology 81(4): 1190–1199. https://doi.org/10.1128/AEM.03364-14.
Guélard J, Beaumont V, Rouchon V, Guyot F, Pillot D, Jézéquel D, Ader M, Newell KD, Deville E (2017). Natural H2 in Kansas: Deep or shallow origin? Geochemistry, Geophysics, Geosystems 18(5): 1841–1865. https://doi.org/10.1002/2016GC006544.
Harris SH, Smith RL, Suflita JM (2007). In situ hydrogen consumption kinetics as an indicator of subsurface microbial activity: In situ microbial hydrogen consumption kinetics. FEMS Microbiology Ecology 60(2): 220–228. https://doi.org/10.1111/j.1574-6941.2007.00286.x.
Haumann FA, Batenburg AM, Pieterse G, Gerbig C, Krol MC, Röckmann T (2013). Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning. Atmospheric Chemistry and Physics 13(18): 9401–9413. https://doi.org/10.5194/acp-13-9401-2013.
Hofmann B (1992). Isolated reduction phenomena in red beds: A result of porewater radiolysis? In International symposium on water-rock interaction, Park City, Utah, USA, pp. 503–506.
Holland T, Powell R (1996). Thermodynamics of order-disorder in minerals: II. symmetric formalism applied to solid solutions. American Mineralogist 81: 1425–1437. https://doi.org/10.2138/am-1996-11-1215.
Holland T, Powell R (2011). An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of metamorphic Geology 29: 333–383. https://doi.org/10.1111/j.1525-1314.2010.00923.x.
Holland TJB, Powell R (1998). An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology 16: 309–343, https://doi.org/10.1111/j.1525-1314.1998.00140.x.
Holloway JR, O’Day PA (2000). Production of CO2 and H2 by Diking-Eruptive Events at Mid-Ocean Ridges: Implications for Abiotic Organic Synthesis and Global Geochemical Cycling. International Geology Review 42(8): 673–683. https://doi.org/10.1080/00206810009465105.
Horsfield B, Mahlstedt N, Weniger P, Misch D, Vranjes-Wessely S, Han S, Wang C (2022). Molecular hydrogen from organic sources in the deep Songliao Basin, P.R. China. International Journal of Hydrogen Energy 47(38): 16750–16774. https://doi.org/10.1016/j.ijhydene.2022.02.208.
Hossain ME (2015). Drilling Costs Estimation for Hydrocarbon Wells. Journal of Sustainable Energy Engineering 3(1): 3–32. https://doi.org/10.7569/jsee.2014.629520.
Huang R, Lin CT, Sun W, Ding X, Zhan W, Zhu J (2017). The production of iron oxide during peridotite serpentinization: Influence of pyroxene. Geoscience Frontiers 8(6): 1311–1321. https://doi.org/10.1016/j.gsf.2017.01.001.
Huang R, Shang X, Zhao Y, Sun W, Liu X (2023). Effect of Fluid Salinity on Reaction Rate and Molecular Hydrogen (H2) Formation During Peridotite Serpentinization at 300°C. Journal of Geophysical Research: Solid Earth 128(3): e2022JB025218. https://doi.org/10.1029/2022JB025218.
Huang R, Sun W, Song M, Ding X (2019). Influence of pH on Molecular Hydrogen (H2) Generation and Reaction Rates during Serpentinization of Peridotite and Olivine. Minerals 9(11): 661. https://doi.org/10.3390/min9110661.
Huang F, Sverjensky DA (2019). Extended deep earth water model for predicting major element mantle metasomatism. Geochimica et Cosmochimica Acta 254: 192–230, https://doi.org/10.1016/J.GCA.2019.03.027.
Häring V, Conrad R (1994). Demonstration of two different H2-oxidizing activities in soil using an H2 consumption and a tritium exchange assay. Biology and Fertility of Soils 17(2): 125–128. https://doi.org/10.1007/BF00337744.
Ivanova AE, Borzenkov IA, Tarasov AL, Milekhina EI, Belyaev SS (2007). A microbiological study of an underground gas storage in the process of gas injection. Microbiology 76(4): 453–460. https://doi.org/10.1134/S002626170704011X.
Jackson O, Lawrence SR, Hutchinson IP, Stocks AE, Barnicoat AC, Powney M (2024). Natural hydrogen: sources, systems and exploration plays. Geoenergy 2(1): geoenergy2024–002. https://doi.org/10.1144/geoenergy2024-002.
Janetz S, Jahnke C, Wendland F, Voigt HJ (2020). Modeling of groundwater flow velocity and aquifer recharge in a Cenozoic multi-aquifer system-a case study from Eastern Brandenburg (Germany). In EGU General Assembly Conference Abstracts, p. 21667. https://doi.org/10.5194/egusphere-egu2020-21667.
Johnson JW, Oelkers EH, Helgeson HC (1992). SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C. Computers & Geosciences 18(7): 899–947. https://doi.org/10.1016/0098-3004(92)90029-Q.
Kallikragas DT, Plugatyr AY, Svishchev IM (2014). High Temperature Diffusion Coefficients for O2, H2, and OH in Water, and for Pure Water. Journal of Chemical & Engineering Data 59: 1964–1969, https://doi.org/10.1021/je500096r.
Kamdee K, Nantasin P, Chotpantarat S, Saengkorakot C, Chanruang P, Polee C, Khaweerat S, Uapoonphol N, Fungklin R, Sriwiang W, Kongsri S, Kukusamude C (2022). Assessment of groundwater dynamics in Quaternary aquifers of the Phrae Basin, northern Thailand, using isotope techniques. Hydrogeology Journal 30(4): 1091–1109. https://doi.org/10.1007/s10040-022-02478-5.
Keir RS (2010). A note on the fluxes of abiogenic methane and hydrogen from mid-ocean ridges. Geophysical Research Letters 37(24). https://doi.org/10.1029/2010GL045362.
Keller NS, Lüders K, Hornbruch G, Birnstengel S, Vogt C, Ebert M, Kallies R, Dahmke A, Richnow HH (2024). Rapid Consumption of Dihydrogen Injected into a Shallow Aquifer by Ecophysiologically Different Microbes. Environmental Science & Technology 58(1): 333–341. https://doi.org/10.1021/acs.est.3c04340.
Kita I, Matsuo S, Wakita H (1982). H2 generation by reaction between H2O and crushed rock: An experimental study on H2 degassing from the active fault zone. Journal of Geophysical Research: Solid Earth 87(B13): 10789–10795. https://doi.org/10.1029/JB087iB13p10789.
Klein F, Bach W, Humphris SE, Kahl WA, Jöns N, Moskowitz B, Berquó TS (2014). Magnetite in seafloor serpentinite—Some like it hot. Geology 42(2): 135–138. https://doi.org/10.1130/G35068.1.
Klein F, Grozeva NG, Seewald JS (2019). Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions. Proceedings of the National Academy of Sciences 116(36): 17666–17672. https://doi.org/10.1073/pnas.1907871116.
Klein F, Tarnas J, Bach W (2020). Abiotic Sources of Molecular Hydrogen on Earth. Elements 16: 24. https://doi.org/10.2138/gselements.16.1.19.
Klein F, Bach W, Jöns N, McCollom T, Moskowitz B, Berquó T (2009). Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°n on the mid-atlantic ridge. Geochimica et Cosmochimica Acta 73: 6868–6893, https://doi.org/10.1016/j.gca.2009.08.021.
Le Caër S (2011). Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation. Water 3(1): 235–253. https://doi.org/10.3390/w3010235.
Lee B, Lee H, Lim D, Brigljević B, Cho W, Cho HS, Kim CH, Lim H (2020). Renewable methanol synthesis from renewable H2 and captured CO2: How can power-to-liquid technology be economically feasible? Applied Energy 279: 115827. https://doi.org/10.1016/j.apenergy.2020.115827.
Lefeuvre N, Truche L, Donzé FV, Ducoux M, Barré G, Fakoury RA, Calassou S, Gaucher EC (2021). Native H2 Exploration in the Western Pyrenean Foothills. Geochemistry, Geophysics, Geosystems 22(8): e2021GC009917. https://doi.org/10.1029/2021GC009917.
Leila M, Loiseau K, Moretti I (2022). Controls on generation and accumulation of blended gases (CH4/H2/He) in the Neoproterozoic Amadeus Basin, Australia. Marine and Petroleum Geology 140: 105643. https://doi.org/10.1016/j.marpetgeo.2022.105643.
Leong JA, Nielsen M, McQueen N, Karolyt˙e R, Hillegonds DJ, Ballentine C, Darrah T, McGillis W, Kelemen P (2023). H2 and CH4 outgassing rates in the Samail ophiolite, Oman: Implications for low-temperature, continental serpentinization rates. Geochimica et Cosmochimica Acta 347: 1–15. https://doi.org/10.1016/j.gca.2023.02.008.
Levitt CJ (2016). Information spillovers in onshore oil and gas exploration. Resource and Energy Economics 45: 80–98. https://doi.org/10.1016/j.reseneeco.2016.05.003.
Lévy D, Roche V, Pasquet G, Combaudon V, Geymond U, Loiseau K, Moretti I (2023). Natural H2 exploration: tools and workflows to characterize a play. Science and Technology for Energy Transition 78: 27. https://doi.org/10.2516/stet/2023021.
Li S, Djilali N, Rosen MA, Crawford C, Sui PC (2022). Transition of heavy-duty trucks from diesel to hydrogen fuel cells: Opportunities, challenges, and recommendations. International Journal of Energy Research 46(9): 11718–11729. https://doi.org/10.1002/er.8066.
Lide DR (1995). CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. CRC press.
Lin LH, Hall J, Lippmann-Pipke J, Ward JA, Lollar BS, DeFlaun M, Rothmel R, Moser D, Gihring TM, Mislowack B, Onstott TC (2005a). Radiolytic H2 in continental crust: Nuclear power for deep subsurface microbial communities. Geochemistry, Geophysics, Geosystems 6(7). https://doi.org/10.1029/2004GC000907.
Lin LH, Slater GF, Lollar BS, Lacrampe-Couloume G, Onstott TC (2005b). The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochimica et Cosmochimica Acta 69(4): 893–903. https://doi.org/10.1016/j.gca.2004.07.032.
Lollar BS, Onstott TC, Lacrampe-Couloume G, Ballentine CJ (2014). The contribution of the Precambrian continental lithosphere to global H2 production. Nature 516(7531): 379–382. https://doi.org/10.1038/nature14017.
Lopez-Lazaro C, Bachaud P, Moretti I, Ferrando N (2019). Predicting the phase behavior of hydrogen in NaCl brines by molecular simulation for geological applications. Bulletin de la Société Géologique de France 190(1): 7. https://doi.org/10.1051/bsgf/2019008.
Löffler M, Schrader M, Lüders K, Werban U, Hornbruch G, Dahmke A, Vogt C, Richnow HH (2022). Stable Hydrogen Isotope Fractionation of Hydrogen in a Field Injection Experiment: Simulation of a Gaseous H2 Leakage. ACS Earth and Space Chemistry 6(3): 631–641. https://doi.org/10.1021/acsearthspacechem.1c00254.
Maiga O, Deville E, Laval J, Prinzhofer A, Diallo AB (2023). Characterization of the spontaneously recharging natural hydrogen reservoirs of Bourakebougou in Mali. Scientific Reports 13(1): 11876. https://doi.org/10.1038/s41598-023-38977-y.
Malvoisin B, Brunet F (2023). Barren ground depressions, natural H2 and orogenic gold deposits: Spatial link and geochemical model. Science of The Total Environment 856: 158969. https://doi.org/10.1016/j.scitotenv.2022.158969.
Marcaillou C, Muñoz M, Vidal O, Parra T, Harfouche M (2011). Mineralogical evidence for H2 degassing during serpentinization at 300°C/300bar. Earth and Planetary Science Letters 303(3-4): 281–290. https://doi.org/10.1016/j.epsl.2011.01.006.
Mayhew LE, Ellison ET (2020). A synthesis and meta-analysis of the Fe chemistry of serpentinites and serpentine minerals. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378(2165): 20180420–20180420. https://doi.org/10.1098/rsta.2018.0420.
McCollom TM (2003). Formation of meteorite hydrocarbons from thermal decomposition of siderite (FeCO3). Geochimica et Cosmochimica Acta 67(2): 311–317. https://doi.org/10.1016/S0016-7037(02)00945-6.
McCollom TM, Bach W (2009). Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochimica et Cosmochimica Acta 73(3): 856–875. https://doi.org/10.1016/j.gca.2008.10.032.
McCollom TM, Donaldson C (2016). Generation of Hydrogen and Methane during Experimental Low-Temperature Reaction of Ultramafic Rocks with Water. Astrobiology 16(6): 389–406. https://doi.org/10.1089/ast.2015.1382.
Milesi V, Guyot F, Brunet F, Richard L, Recham N, Benedetti M, Dairou J, Prinzhofer A (2015). Formation of CO2, H2 and condensed carbon from siderite dissolution in the 200–300°C range and at 50 MPa. Geochimica et Cosmochimica Acta 154: 201–211. https://doi.org/10.1016/j.gca.2015.01.015.
Milesi V, Prinzhofer A, Guyot F, Benedetti M, Rodrigues R (2016). Contribution of siderite–water interaction for the unconventional generation of hydrocarbon gases in the Solimões basin, north-west Brazil. Marine and Petroleum Geology 71: 168–182. https://doi.org/10.1016/j.marpetgeo.2015.12.022.
Miller HM, Mayhew LE, Ellison ET, Kelemen P, Kubo M, Templeton AS (2017). Low temperature hydrogen production during experimental hydration of partially-serpentinized dunite. Geochimica et Cosmochimica Acta 209: 161–183. https://doi.org/10.1016/j.gca.2017.04.022.
Moody JB (1976). Serpentinization: a review. Lithos 9(2): 125–138. https://doi.org/10.1016/0024-4937(76)90030-X.
Moretti I (2019). H2: energy vector or source? L’Actualité Chimique 442: 15–16. https://new.societechimiquedefrance.fr/numero/h2-vecteur-ou-source-denergie-p15-n442/.
Moretti I, Brouilly E, Loiseau K, Prinzhofer A, Deville E (2021a). Hydrogen Emanations in Intracratonic Areas: New Guide Lines for Early Exploration Basin Screening. Geosciences 11(3): 145. https://doi.org/10.3390/geosciences11030145.
Moretti I, Geymond U, Pasquet G, Aimar L, Rabaute A (2022). Natural hydrogen emanations in Namibia: Field acquisition and vegetation indexes from multispectral satellite image analysis. International Journal of Hydrogen Energy 47(84): 35588–35607. https://doi.org/10.1016/j.ijhydene.2022.08.135.
Moretti I, Prinzhofer A, Françolin J, Pacheco C, Rosanne M, Rupin F, Mertens J (2021b). Long-term monitoring of natural hydrogen superficial emissions in a brazilian cratonic environment. Sporadic large pulses versus daily periodic emissions. International Journal of Hydrogen Energy 46(5): 3615–3628. https://doi.org/10.1016/j.ijhydene.2020.11.026.
Mouli-Castillo J, Heinemann N, Edlmann K (2021). Mapping geological hydrogen storage capacity and regional heating demands: An applied UK case study. Applied Energy 283: 116348. https://doi.org/10.1016/j.apenergy.2020.116348.
Moussallam Y, Oppenheimer C, Aiuppa A, Giudice G, Moussallam M, Kyle P (2012). Hydrogen emissions from Erebus volcano, Antarctica. Bulletin of Volcanology 74: 2109–2120. https://doi.org/10.1007/s00445-012-0649-2.
Myagkiy A, Brunet F, Popov C, Krüger R, Guimarães H, Sousa RS, Charlet L, Moretti I (2020). H2 dynamics in the soil of a H2-emitting zone (São Francisco Basin, Brazil): Microbial uptake quantification and reactive transport modelling. Applied Geochemistry 112: 104474. https://doi.org/10.1016/j.apgeochem.2019.104474.
Neal C, Stanger G (1983). Hydrogen generation from mantle source rocks in Oman. Earth and Planetary Science Letters 66: 315–320. https://doi.org/10.1016/0012-821X(83)90144-9.
Novelli PC, Lang PM, Masarie KA, Hurst DF, Myers R, Elkins JW (1999). Molecular hydrogen in the troposphere: Global distribution and budget. Journal of Geophysical Research: Atmospheres 104(D23): 30427–30444. https://doi.org/10.1029/1999JD900788.
Ocko IB, Hamburg SP (2022). Climate consequences of hydrogen emissions. Atmospheric Chemistry and Physics, 22(14), 9349–9368. https://doi.org/10.5194/acp-22-9349-2022.
Oliveira AM, Beswick RR, Yan Y (2021). A green hydrogen economy for a renewable energy society. Current Opinion in Chemical Engineering 33: 100701. https://doi.org/10.1016/j.coche.2021.100701.
Palmer DA, Gamsjäger H (2010). Solubility measurements of crystalline β-Ni(OH)2in aqueous solution as a function of temperature and pH. Journal of Coordination Chemistry, 63(14–16), 2888–2908. https://doi.org/10.1080/00958972.2010.492215.
Pastina B, LaVerne JA (2001). Effect of Molecular Hydrogen on Hydrogen Peroxide in Water Radiolysis. The Journal of Physical Chemistry A, 105(40), 9316–9322. https://doi.org/10.1021/jp012245j.
Patonia A, Lambert M, Lin N, Shuster M, Austin B (2024). Natural (geologic) hydrogen and its potential role in a net-zero carbon future: Is all that glitters gold? Oxford Institute of Energy Studies Paper ET38.
Patterson JD, Aydin M, Crotwell AM, Petron G, Severinghaus JP, Saltzman ES (2020). Atmospheric History of H2 Over the Past Century Reconstructed From South Pole Firn Air. Geophysical Research Letters 47(14): e2020GL087787. https://doi.org/10.1029/2020GL087787.
Pedersen K (1997). Microbial life in deep granitic rock. FEMS Microbiology Reviews 20(3-4): 399–414. https://doi.org/10.1111/j.1574-6976.1997.tb00325.x.
Penner JE, McElroy MB, Wofsy SC (1977). Sources and sinks for atmospheric H2: A current analysis with projections for the influence of anthropogenic activity. Planetary and Space Science 25(6): 521–540. https://doi.org/10.1016/0032-0633(77)90059-9.
Price H, Jaeglé L, Rice A, Quay P, Novelli PC, Gammon R (2007). Global budget of molecular hydrogen and its deuterium content: Constraints from ground station, cruise, and aircraft observations. Journal of Geophysical Research: Atmospheres 112(D22). https://doi.org/10.1029/2006JD008152.
Prinzhofer A, Cacas-Stentz MC (2023). Natural hydrogen and blend gas: a dynamic model of accumulation. International Journal of Hydrogen Energy 48(57): 21610–21623. https://doi.org/10.1016/j.ijhydene.2023.03.060.
Prinzhofer A, Moretti I, Françolin J, Pacheco C, D’Agostino A, Werly J, Rupin F (2019). Natural hydrogen continuous emission from sedimentary basins: The example of a Brazilian H2-emitting structure. International Journal of Hydrogen Energy 44(12): 5676–5685. https://doi.org/10.1016/j.ijhydene.2019.01.119.
Prinzhofer A, Tahara Cissé CS, Diallo AB (2018). Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali). International Journal of Hydrogen Energy 43(42): 19315–19326. https://doi.org/10.1016/j.ijhydene.2018.08.193.
Robinson JA, Tiedje JM (1984). Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Archives of Microbiology 137(1): 26–32. https://doi.org/10.1007/BF00425803.
van Ruijven B, Lamarque JF, van Vuuren DP, Kram T, Eerens H (2011). Emission scenarios for a global hydrogen economy and the consequences for global air pollution. Global Environmental Change 21(3): 983–994. https://doi.org/10.1016/j.gloenvcha.2011.03.013.
Saidy K, Fawad M, Whattam SA, Al-Shuhail AA, Al-Shuhail AA, Campos M, Sulistyohariyanto FA (2024). Unlocking the H2 potential in Saudi Arabia: Exploring serpentinites as a source of H2 production. International Journal of Hydrogen Energy 89: 1482–1491. https://doi.org/10.1016/j.ijhydene.2024.09.256.
Sato M, Sutton AJ, McGee KA (1984). Anomalous hydrogen emissions from the San Andreas fault observed at the Cienega Winery, central California. pure and applied geophysics 122(2): 376–391. https://doi.org/10.1007/BF00874606.
Savary V, Pagel M (1997). The effects of water radiolysis on local redox conditions in the Oklo, Gabon, natural fission reactors 10 and 16. Geochimica et Cosmochimica Acta 61(21): 4479–4494. https://doi.org/10.1016/S0016-7037(97)00261-5.
Schmidt U (1974). Molecular hydrogen in the atmosphere. Tellus 26(1-2): 78–90. https://doi.org/10.1111/j.2153-3490.1974.tb01954.x.
Schultz MG, Diehl T, Brasseur GP, Zittel W (2003). Air Pollution and Climate-Forcing Impacts of a Global Hydrogen Economy. Science 302(5645): 624–627. https://doi.org/10.1126/science.1089527.
Schwarzenbach EM, Vrijmoed JC, Engelmann JM, Liesegang M, Wiechert U, Rohne R, Plümper O (2021). Sulfide Dissolution and Awaruite Formation in Continental Serpentinization Environments and Its Implications to Supporting Life. Journal of Geophysical Research: Solid Earth 126(5): e2021JB021758. https://doi.org/10.1029/2021JB021758.
Schönauer AL, Glanz S (2022). Hydrogen in future energy systems: Social acceptance of the technology and its large-scale infrastructure. International Journal of Hydrogen Energy 47(24): 12251–12263. https://doi.org/10.1016/j.ijhydene.2021.05.160.
Seward T, Franck E (1981). The system hydrogen-water up to 440 C and 2500 bar pressure. Berichte der Bunsengesellschaft für physikalische Chemie 85(1): 2–7. https://doi.org/10.1002/bbpc.19810850103.
Seyfried WE, Foustoukos DI, Fu Q (2007). Redox evolution and mass transfer during serpentinization: An experimental and theoretical study at 200°C, 500 bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges. Geochimica et Cosmochimica Acta 71(15): 3872–3886. https://doi.org/10.1016/j.gca.2007.05.015.
Shahien MG, Azer MK, Asimow PD (2021). Neoproterozoic Ophiolites of the Arabian-Nubian Shield. In Hamimi Z, Fowler AR, Liégeois JP, Collins A, Abdelsalam MG, Abd EI-Wahed M (eds.) The Geology of the Arabian-Nubian Shield, pp. 297–330. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-72995-0_12.
Thaysen EM, McMahon S, Strobel GJ, Butler IB, Ngwenya BT, Heinemann N, Wilkinson M, Hassanpouryouzband A, McDermott CI, Edlmann K (2021). Estimating microbial growth and hydrogen consumption in hydrogen storage in porous media. Renewable and Sustainable Energy Reviews 151: 111481. https://doi.org/10.1016/j.rser.2021.111481.
Truche L, Donzé FV, Goskolli E, Muceku B, Loisy C, Monnin C, Dutoit H, Cerepi A (2024). A deep reservoir for hydrogen drives intense degassing in the Bulqizë ophiolite. Science 383(6683): 618–621. https://doi.org/10.1126/science.adk9099.
Vacquand C, Deville E, Beaumont V, Guyot F, Sissmann O, Pillot D, Arcilla C, Prinzhofer A (2018). Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures. Geochimica et Cosmochimica Acta 223: 437–461. https://doi.org/10.1016/j.gca.2017.12.018.
Vollmer MK, Walter S, Mohn J, Steinbacher M, Bond SW, Röckmann T, Reimann S (2012). Molecular hydrogen (H2) combustion emissions and their isotope (D/H) signatures from domestic heaters, dieselvehicleengines, wasteincineratorplants, andbiomass burning. Atmospheric Chemistry and Physics 12(14): 6275–6289. https://doi.org/10.5194/acp-12-6275-2012.
Wakita H, Nakamura Y, Kita I, Fujii N, Notsu K (1980). Hydrogen Release: New Indicator of Fault Activity. Science 210(4466): 188–190. https://doi.org/10.1126/science.210.4466.188.
Warneck P (1988). Chapter 6 Volatile Hydrocarbons and Halocarbons. In Dmowska R, Holton JR, Rossby HT (eds.) Chemistry of the Natural Atmosphere, vol. 41 of International Geophysics, pp. 223–277. Academic Press. https://doi.org/10.1016/S0074-6142(08)60633-6.
Wedepohl KH (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7), 1217–1232. https://doi.org/10.1016/0016-7037(95)00038-2.
Wei HF, Ledoux E, De Marsily G (1990). Regional modelling of groundwater flow and salt and environmental tracer transport in deep aquifers in the Paris Basin. Journal of Hydrology 120(1): 341–358. https://doi.org/10.1016/0022-1694(90)90158-T.
Worman SL, Pratson LF, Karson JA, Klein EM (2016). Global rate and distribution of H2 gas produced by serpentinization within oceanic lithosphere. Geophysical Research Letters 43(12): 6435–6443. https://doi.org/10.1002/2016GL069066.
Wu S, Salmon N, Li MMJ, Bañares-Alcántara R, Tsang SCE (2022). Energy Decarbonization via Green H2 or NH3? ACS Energy Letters 7(3): 1021–1033. https://doi.org/10.1021/acsenergylett.1c02816.
Zgonnik V (2020). The occurrence and geoscience of natural hydrogen: A comprehensive review. Earth-Science Reviews 203: 103140. https://doi.org/10.1016/j.earscirev.2020.103140.
Zgonnik V, Beaumont V, Larin N, Pillot D, Deville E (2019). Diffused flow of molecular hydrogen through the Western Hajar mountains, Northern Oman. Arabian Journal of Geosciences 12(3): 71. https://doi.org/10.1007/s12517-019-4242-2.
Zhu J, Tao R, Ishii T, Ikuta D, Xu W, Zhang L, Su Y, Liu R, Jin Z (2025). Iron hydride (FeHx) as a crucial intermediate in transformation of subducted H2O to abiotic H2 in Earth’s deep mantle. Science China Earth Sciences 68: 1485–1496. https://doi.org/10.1007/s11430-024-1544-6.
Zimmer M, Kröner A, Jochum K, Reischmann T, Todt W (1995). The Gabal Gerf complex: a Precambrian N-MORB ophiolite in the Nubian shield, NE Africa. Chemical Geology 123(1-4): 29–51. https://doi.org/10.1016/0009-2541(95)00018-H.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2025 Fabrice Brunet, Benjamin Malvoisin

