An experimental study of clinopyroxene- and garnet-melt trace element partitioning in Fe-rich basaltic systems
Read Online
PDF
Data, Code, and Outputs

Supplementary Files

Supplementary Material

Keywords

Trace Element Partitioning
Clinopyroxene
Garnet
Lunar Basalt
Lattice Strain Model

How to Cite

Mouser, M. D., & Dygert, N. (2025). An experimental study of clinopyroxene- and garnet-melt trace element partitioning in Fe-rich basaltic systems. Advances in Geochemistry and Cosmochemistry, 1(2), 719. https://doi.org/10.33063/agc.v1i2.719

Abstract

Trace elements in Fe-rich basaltic systems are important for understanding petrogenesis on the Moon and layered intrusions on Earth. To investigate crystal-chemical controls on partitioning between clinopyroxenes and garnets in Fe-rich basalts, an experimental study was conducted utilizing two synthetic compositions, a ferrobasalt (Fe-rich, Al-poor) and an intermediate basalt (relatively more Al- and Mg-rich) at approximately one log unit below the iron-wüstite buffer. Experiments were run using piston cylinder and multi-anvil apparatuses at pressures of 1 to 5 GPa, testing partitioning behavior in phases that precipitated from the endmember haplobasalts and a 50-50 mixture. We find that Al substitution into the clinopyroxene tetrahedral site influences 1+, 3+ and 4+ cation partitioning, with more aluminous samples having the highest partition coefficients for large ion lithophile elements, trivalent rare earth elements (REEs), and high field strength elements. Low-Al ferrobasalt clinopyroxenes exhibit heavy REE (HREE) partition coefficient anomalies, suggesting HREE substitution onto the M1 site, and a positive Eu partitioning anomaly. In contrast, higher-Al intermediate basalt clinopyroxenes have negative Eu partitioning anomalies and no HREE partitioning anomaly. The almandine-type garnets produced in higher-pressure experiments provide novel constraints for lunar-relevant systems. Comparison with literature data suggests these Fe-rich garnets exhibit partitioning behavior similar to garnets in more magnesian systems. Experimentally determined partition coefficients and new predictive models are applied to the petrogenesis of Fe-rich lunar basalts to evaluate their potential origins. To explain Yb/Sm ratios of black glasses, successful models invoke a minor garnet component in their mantle sources.

https://doi.org/10.33063/agc.v1i2.719
Read Online
PDF
Data, Code, and Outputs

References

Anders, E., & Grevesse, N. (1989). Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53(1), 197–214. https://doi.org/10.1016/0016-7037(89)90286-x

Barr, J. A., & Grove, T. L. (2013). Experimental petrology of the Apollo 15 group A green glasses: Melting primordial lunar mantle and magma ocean cumulate assimilation. Geochimica et Cosmochimica Acta, 106, 216–230. https://doi.org/10.1016/j.gca.2012.12.035

Baudouin, C., France, L., Boulanger, M., Dalou, C., & Devidal, J.-L. (2020). Trace element partitioning between clinopyroxene and alkaline magmas: parametrization and role of M1 site on HREE enrichment in clinopyroxenes. Contributions to Mineralogy and Petrology, 175(5). https://doi.org/10.1007/s00410-020-01680-6

Beard, B. L., Taylor, L. A., Scherer, E. E., Johnson, C. M., & Snyder, G. A. (1998). The Source Region and Melting Mineralogy of High-Titanium and Low-Titanium Lunar Basalts Deduced from Lu-Hf Isotope Data. Geochimica et Cosmochimica Acta, 62(3), 525–544. https://doi.org/10.1016/s0016-7037(97)00373-6

Beard, C. D., van Hinsberg, V. J., Stix, J., & Wilke, M. (2019). Clinopyroxene/Melt Trace Element Partitioning in Sodic Alkaline Magmas. Journal of Petrology, 60(9), 1797–1823. https://doi.org/10.1093/petrology/egz052

Bédard, J. H. (2014). Parameterizations of calcic clinopyroxene—Melt trace element partition coefficients. Geochemistry, Geophysics, Geosystems, 15(2), 303–336. https://doi.org/10.1002/2013gc005112

Bennett, S. L., Blundy, J., & Elliott, T. (2004). The effect of sodium and titanium on crystal-melt partitioning of trace elements. Geochimica et Cosmochimica Acta, 68(10), 2335–2347. https://doi.org/10.1016/j.gca.2003.11.006

Bertka, C. M., & Fei, Y. (1997). Mineralogy of the Martian interior up to core‐mantle boundary pressures. Journal of Geophysical Research: Solid Earth, 102(B3), 5251–5264. https://doi.org/10.1029/96jb03270

Blatter, D. L., Sisson, T. W., & Hankins, W. B. (2023). Garnet stability in arc basalt, andesite, and dacite—an experimental study. Contributions to Mineralogy and Petrology, 178(6). https://doi.org/10.1007/s00410-023-02008-w

Blundy, J., & Wood, B. (2003). Partitioning of trace elements between crystals and melts. Earth and Planetary Science Letters, 210(3–4), 383–397. https://doi.org/10.1016/s0012-821x(03)00129-8

Brice, J. C. (1975). Some thermodynamic aspects of the growth of strained crystals. Journal of Crystal Growth, 28(2), 249–253. https://doi.org/10.1016/0022-0248(75)90241-9

Cameron, M., & Papike, J. J. (1981). Structural and chemical variations in pyroxenes. American Mineralogist, 66, 1–50.

Colson, R. O., McKay, G. A., & Taylor, L. A. (1989). Charge balancing of trivalent trace elements in olivine and low-Ca pyroxene: A test using experimental partitioning data. Geochimica et Cosmochimica Acta, 53(3), 643–648. https://doi.org/10.1016/0016-7037(89)90007-0

Corgne, A., Armstrong, L. S., Keshav, S., Fei, Y., McDonough, W. F., Minarik, W. G., & Moreno, K. (2012). Trace element partitioning between majoritic garnet and silicate melt at 10–17 GPa: Implications for deep mantle processes. Lithos, 148, 128–141. https://doi.org/10.1016/j.lithos.2012.06.013

Corgne, A., & Wood, B. J. (2004). Trace element partitioning between majoritic garnet and silicate melt at 25GPa. Physics of the Earth and Planetary Interiors, 143–144, 407–419. https://doi.org/10.1016/j.pepi.2003.08.012

Dalou, C., Boulon, J., T. Koga, K., Dalou, R., & Dennen, R. L. (2018). DOUBLE FIT: Optimization procedure applied to lattice strain model. Computers & Geosciences, 117, 49–56. https://doi.org/10.1016/j.cageo.2018.04.013

Deines, P., Nafziger, R. H., Ulmer, G. C., & Woermann, E. (1974). Temperature – oxygen fugacity tables for selected gas mixtures in the system C-H-O at one atmosphere total pressure. Bulletin of the Earth and Mineral Sciences Experiment Station, 88.

Deines, P., Nafziger, R. H., Ulmer, G. C., & Woermann, E. (1976). Temperature-oxygen fugacity tables for selected gas mixtures in the system C-H-O at one atmosphere total pressure. Metallurgical Transactions B, 7(1), 143–143. https://doi.org/10.1007/bf02652831

Drake, M. J. (1975). The oxidation state of europium as an indicator of oxygen fugacity. Geochimica et Cosmochimica Acta, 39(1), 55–64. https://doi.org/10.1016/0016-7037(75)90184-2

Draper, D. S., duFrane, S. A., Shearer, C. K., Dwarzski, R. E., & Agee, C. B. (2006). High-pressure phase equilibria and element partitioning experiments on Apollo 15 green C picritic glass: Implications for the role of garnet in the deep lunar interior. Geochimica et Cosmochimica Acta, 70(9), 2400–2416. https://doi.org/10.1016/j.gca.2006.01.027

Dwarzski, R. E., Draper, D. S., Shearer, C. K., & Agee, C. B. (2006). Experimental insights on crystal chemistry of high-Ti garnets from garnet-melt partitioning of rare-earth and high-field-strength elements. American Mineralogist, 91(10), 1536–1546. https://doi.org/10.2138/am.2006.2100

Dygert, N., Draper, D. S., Rapp, J. F., Lapen, T. J., Fagan, A. L., & Neal, C. R. (2020). Experimental determinations of trace element partitioning between plagioclase, pigeonite, olivine, and lunar basaltic melts and an fO2 dependent model for plagioclase-melt Eu partitioning. Geochimica et Cosmochimica Acta, 279, 258–280. https://doi.org/10.1016/j.gca.2020.03.037

Dygert, N., Liang, Y., Sun, C., & Hess, P. (2014). An experimental study of trace element partitioning between augite and Fe-rich basalts. Geochimica et Cosmochimica Acta, 132, 170–186. https://doi.org/10.1016/j.gca.2014.01.042

Dygert, N., Liang, Y., Sun, C., & Hess, P. (2015). Corrigendum to ‘An experimental study of trace element partitioning between augite and Fe-rich basalts’ [Geochim. Cosmochim. Acta 132 (2014) 170–186]. Geochimica et Cosmochimica Acta, 149, 281–283. https://doi.org/10.1016/j.gca.2014.09.013

Gaetani, G. A., & Grove, T. L. (1995). Partitioning of rare earth elements between clinopyroxene and silicate melt: Crystal-chemical controls. Geochimica et Cosmochimica Acta, 59(10), 1951–1962. https://doi.org/10.1016/0016-7037(95)00119-0

Gallahan, W. E., & Nielsen, R. L. (1992). The partitioning of Sc, Y, and the rare earth elements between high-Ca pyroxene and natural mafic to intermediate lavas at 1 atmosphere. Geochimica et Cosmochimica Acta, 56(6), 2387–2404. https://doi.org/10.1016/0016-7037(92)90196-p

Harlow, G. E. (1997). K in clinopyroxene at high pressure and temperature; an experimental study. American Mineralogist, 82(3–4), 259–269. https://doi.org/10.2138/am-1997-3-403

Hauri, E. H., Wagner, T. P., & Grove, T. L. (1994). Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chemical Geology, 117(1–4), 149–166. https://doi.org/10.1016/0009-2541(94)90126-0

Hess, P. C., & Parmentier, E. M. (1995). A model for the thermal and chemical evolution of the Moon’s interior: implications for the onset of mare volcanism. Earth and Planetary Science Letters, 134(3–4), 501–514. https://doi.org/10.1016/0012-821x(95)00138-3

Hess, P. C., Rutherford, M. J., & Campbell, H. W. (1978). Ilmenite crystallization in nonmare basalt- Genesis of KREEP and high-Ti mare basalt. Proceedings of the 9th Lunar and Planetary Science Conference, 1, 705–725.

Ji, D., & Dygert, N. (2024). Trace element partitioning between apatite and silicate melts: Effects of major element composition, temperature, and oxygen fugacity, and implications for the volatile element budget of the lunar magma ocean. Geochimica et Cosmochimica Acta, 369, 141–159. https://doi.org/10.1016/j.gca.2023.11.004

Jing, J.-J., Lin, Y., Knibbe, J. S., & van Westrenen, W. (2022). Garnet stability in the deep lunar mantle: Constraints on the physics and chemistry of the interior of the Moon. Earth and Planetary Science Letters, 584, 117491. https://doi.org/10.1016/j.epsl.2022.117491

Johnson, K. T. M. (1998). Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contributions to Mineralogy and Petrology, 133(1–2), 60–68. https://doi.org/10.1007/s004100050437

Kesson, S. E., & Ringwood, A. E. (1976). Mare basalt petrogenesis in a dynamic moon. Earth and Planetary Science Letters, 30(2), 155–163. https://doi.org/10.1016/0012-821x(76)90241-7

Klemme, S., Blundy, J. D., & Wood, B. J. (2002). Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochimica et Cosmochimica Acta, 66(17), 3109–3123. https://doi.org/10.1016/s0016-7037(02)00859-1

Li, H., Zhang, N., Liang, Y., Wu, B., Dygert, N. J., Huang, J., & Parmentier, E. M. (2019). Lunar Cumulate Mantle Overturn: A Model Constrained by Ilmenite Rheology. Journal of Geophysical Research: Planets, 124(5), 1357–1378. https://doi.org/10.1029/2018je005905

Longhi, J. (2003). A new view of lunar ferroan anorthosites: Postmagma ocean petrogenesis. Journal of Geophysical Research: Planets, 108(E8). https://doi.org/10.1029/2002je001941

Lundstrom, C. C., Shaw, H. F., Ryerson, F. J., Williams, Q., & Gill, J. (1998). Crystal chemical control of clinopyroxene-melt partitioning in the Di-Ab-An system: implications for elemental fractionations in the depleted mantle. Geochimica et Cosmochimica Acta, 62(16), 2849–2862. https://doi.org/10.1016/s0016-7037(98)00197-5

Medard, E., McCammon, C. A., Barr, J. A., & Grove, T. L. (2008). Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules. American Mineralogist, 93(11–12), 1838–1844. https://doi.org/10.2138/am.2008.2842

Meyer, C. (2005). Lunar Sample Compendium. http://curator.jsc.nasa.gov/lunar/lsc/index.cfm. http://curator.jsc.nasa.gov/lunar/lsc/index.cfm

Mouser, M. (2025). meganmouser/PxGt-Trace-Element-Partitioning: Updated files V1.2.2 [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.16056028

Münker, C. (2010). A high field strength element perspective on early lunar differentiation. Geochimica et Cosmochimica Acta, 74(24), 7340–7361. https://doi.org/10.1016/j.gca.2010.09.021

Neal, C. R. (2001). Interior of the Moon: The presence of garnet in the primitive deep lunar mantle. Journal of Geophysical Research: Planets, 106(E11), 27865–27885. https://doi.org/10.1029/2000je001386

Neal, C. R., & Taylor, L. A. (1992). Petrogenesis of mare basalts: A record of lunar volcanism. Geochimica et Cosmochimica Acta, 56(6), 2177–2211. https://doi.org/10.1016/0016-7037(92)90184-k

Novak, G. A., & Gibbs, G. V. (1971). The Crystal Chemistry of the Silicate Garnets. American Mineralogist, 56, 791–825.

Ohtani, E. (1985). The primordial terrestrial magma ocean and its implication for stratification of the mantle. Physics of the Earth and Planetary Interiors, 38(1), 70–80. https://doi.org/10.1016/0031-9201(85)90123-2

Olin, P. H., & Wolff, J. A. (2010). Rare earth and high field strength element partitioning between iron-rich clinopyroxenes and felsic liquids. Contributions to Mineralogy and Petrology, 160(5), 761–775. https://doi.org/10.1007/s00410-010-0506-2

Papike, J. J., Hodges, F. N., Bence, A. E., Cameron, M., & Rhodes, J. M. (1976). Mare basalts: Crystal chemistry, mineralogy, and petrology. Reviews of Geophysics, 14(4), 475–540. https://doi.org/10.1029/rg014i004p00475

Papike, J. J., Simon, S. B., Burger, P. V., Bell, A. S., Shearer, C. K., & Karner, J. M. (2016). Chromium, vanadium, and titanium valence systematics in Solar System pyroxene as a recorder of oxygen fugacity, planetary provenance, and processes. American Mineralogist, 101(4), 907–918. https://doi.org/10.2138/am-2016-5507

Pertermann, M., Hirschmann, M. M., Hametner, K., Günther, D., & Schmidt, M. W. (2004). Experimental determination of trace element partitioning between garnet and silica‐rich liquid during anhydrous partial melting of MORB‐like eclogite. Geochemistry, Geophysics, Geosystems, 5(5). https://doi.org/10.1029/2003gc000638

Pertermann, M., & Hirschmann, M. M. (2002). Trace-element partitioning between vacancy-rich eclogitic clinopyroxene and silicate melt. American Mineralogist, 87(10), 1365–1376. https://doi.org/10.2138/am-2002-1012

Rutstein, M. S., & Yund, R. A. (1969). Unit-cell parameters of synthetic diopside-hedenbergite solid solutions. American Mineralogist, 54, 238–245.

Salters, V. J. M., & Longhi, J. (1999). Trace element partitioning during the initial stages of melting beneath mid-ocean ridges. Earth and Planetary Science Letters, 166(1–2), 15–30. https://doi.org/10.1016/s0012-821x(98)00271-4

Salters, V. J. M., Longhi, J. E., & Bizimis, M. (2002). Near mantle solidus trace element partitioning at pressures up to 3.4 GPa. Geochemistry, Geophysics, Geosystems, 3(7), 1–23. https://doi.org/10.1029/2001gc000148

Schreiber, H. D., Merkel, R. C., Schreiber, V. L., & Balazs, G. B. (1987). Mutual interactions of redox couples via electron exchange in silicate melts: Models for geochemical melt systems. Journal of Geophysical Research: Solid Earth, 92(B9), 9233–9245. https://doi.org/10.1029/jb092ib09p09233

Schwandt, C. S., & McKay, G. A. (1998). Rare earth element partition coefficients from enstatite/melt synthesis experiments. Geochimica et Cosmochimica Acta, 62(16), 2845–2848. https://doi.org/10.1016/s0016-7037(98)00233-6

Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751–767. https://doi.org/10.1107/s0567739476001551

Shearer, C. K., & Papike, J. J. (1993). Basaltic magmatism on the Moon: A perspective from volcanic picritic glass beads. Geochimica et Cosmochimica Acta, 57(19), 4785–4812. https://doi.org/10.1016/0016-7037(93)90200-g

Shearer, C. K., & Papike, J. J. (1999). Magmatic evolution of the Moon. American Mineralogist, 84(10), 1469–1494. https://doi.org/10.2138/am-1999-1001

Shearer, C. K., Papike, J. J., Galbreath, K. C., & Shimizu, N. (1991). Exploring the lunar mantle with secondary ion mass spectrometry: a comparison of lunar picritic glass beads from the Apollo 14 and Apollo 17 sites. Earth and Planetary Science Letters, 102(2), 134–147. https://doi.org/10.1016/0012-821x(91)90003-z

Shearer, C. K., Papike, J. J., & Karner, J. M. (2006). Pyroxene europium valence oxybarometer: Effects of pyroxene composition, melt composition, and crystallization kinetics. American Mineralogist, 91(10), 1565–1573. https://doi.org/10.2138/am.2006.2098

Shearer, C. K., Papike, J. J., Simon, S. B., Shimizu, N., Yurimoto, H., & Sueno, S. (1990). Ion microprobe studies of trace elements in Apollo 14 volcanic glass beads: Comparisons to Apollo 14 mare basalts and petrogenesis of picritic magmas. Geochimica et Cosmochimica Acta, 54(3), 851–867. https://doi.org/10.1016/0016-7037(90)90378-x

Snape, J. F., Nemchin, A. A., Johnson, T., Luginbühl, S., Berndt, J., Klemme, S., Morrissey, L. J., & van Westrenen, W. (2022). Experimental constraints on the long-lived radiogenic isotope evolution of the Moon. Geochimica et Cosmochimica Acta, 326, 119–148. https://doi.org/10.1016/j.gca.2022.04.008

Snyder, G. A., Taylor, L. A., & Neal, C. R. (1992). A chemical model for generating the sources of mare basalts: Combined equilibrium and fractional crystallization of the lunar magmasphere. Geochimica et Cosmochimica Acta, 56(10), 3809–3823. https://doi.org/10.1016/0016-7037(92)90172-f

Sun, C., Graff, M., & Liang, Y. (2017). Trace element partitioning between plagioclase and silicate melt: The importance of temperature and plagioclase composition, with implications for terrestrial and lunar magmatism. Geochimica et Cosmochimica Acta, 206, 273–295. https://doi.org/10.1016/j.gca.2017.03.003

Sun, C., & Liang, Y. (2012). Distribution of REE between clinopyroxene and basaltic melt along a mantle adiabat: effects of major element composition, water, and temperature. Contributions to Mineralogy and Petrology, 163(5), 807–823. https://doi.org/10.1007/s00410-011-0700-x

Sun, C., & Liang, Y. (2013). The importance of crystal chemistry on REE partitioning between mantle minerals (garnet, clinopyroxene, orthopyroxene, and olivine) and basaltic melts. Chemical Geology, 358, 23–36. https://doi.org/10.1016/j.chemgeo.2013.08.045

Suzuki, T., Hirata, T., Yokoyama, T. D., Imai, T., & Takahashi, E. (2012). Pressure effect on element partitioning between minerals and silicate melt: Melting experiments on basalt up to 20GPa. Physics of the Earth and Planetary Interiors, 208–209, 59–73. https://doi.org/10.1016/j.pepi.2012.07.008

Thompson, R. N. (1974). Some high-pressure pyroxenes. Mineralogical Magazine, 39(307), 768–787. https://doi.org/10.1180/minmag.1974.039.307.04

Tual, L., Smit, M. A., Kooijman, E., Kielman‐Schmitt, M., & Ratschbacher, L. (2022). Garnet, zircon, and monazite age and REE signatures in (ultra)high‐temperature and high‐pressure rocks: Examples from the Caledonides and the Pamir. Journal of Metamorphic Geology, 40(8), 1321–1346. https://doi.org/10.1111/jmg.12667

Tuff, J., & Gibson, S. A. (2007). Trace-element partitioning between garnet, clinopyroxene and Fe-rich picritic melts at 3 to 7 GPa. Contributions to Mineralogy and Petrology, 153(4), 369–387. https://doi.org/10.1007/s00410-006-0152-x

Unruh, D. M., Stille, P., Patchett, P. J., & Tatsumoto, M. (1984). Lu‐Hf and Sm‐Nd evolution in lunar mare basalts. Journal of Geophysical Research: Solid Earth, 89(S02). https://doi.org/10.1029/jb089is02p0b459

van Westrenen, W., Blundy, J. D., & Wood, B. J. (2000). Effect of Fe2+ on garnet–melt trace element partitioning: experiments in FCMAS and quantification of crystal-chemical controls in natural systems. Lithos, 53(3–4), 189–201. https://doi.org/10.1016/s0024-4937(00)00024-4

van Westrenen, W., Blundy, J. D., & Wood, B. J. (2001). High field strength element/rare earth element fractionation during partial melting in the presence of garnet: Implications for identification of mantle heterogeneities. Geochemistry, Geophysics, Geosystems, 2(7). https://doi.org/10.1029/2000gc000133

van Westrenen, W., Blundy, J., & Wood, B. (1999). Crystal-chemical controls on trace element partitioning between garnet and anhydrous silicate melt. American Mineralogist, 84, 838–847. https://doi.org/10.2138/am-1999-5-618

Wadhwa, M. (2008). Redox Conditions on Small Bodies, the Moon and Mars. Reviews in Mineralogy and Geochemistry, 68(1), 493–510. https://doi.org/10.2138/rmg.2008.68.17

Walker, D., Longhi, J., Stolper, E. M., Grove, T. L., & Hays, J. F. (1975). Origin of titaniferous lunar basalts. Geochimica et Cosmochimica Acta, 39(9), 1219–1235. https://doi.org/10.1016/0016-7037(75)90129-5

Walter, M. J., Nakamura, E., Trønnes, R. G., & Frost, D. J. (2004). Experimental constraints on crystallization differentiation in a deep magma ocean. Geochimica et Cosmochimica Acta, 68(20), 4267–4284. https://doi.org/10.1016/j.gca.2004.03.014

Warren, P. H. (1985). THE MAGMA OCEAN CONCEPT AND LUNAR EVOLUTION. Annual Review of Earth and Planetary Sciences, 13(1), 201–240. https://doi.org/10.1146/annurev.ea.13.050185.001221

Wood, M. C., Gréaux, S., Kono, Y., Kakizawa, S., Ishikawa, Y., Inoué, S., Kuwahara, H., Higo, Y., Tsujino, N., & Irifune, T. (2024). Sound velocities in lunar mantle aggregates at simultaneous high pressures and temperatures: Implications for the presence of garnet in the deep lunar interior. Earth and Planetary Science Letters, 641, 118792. https://doi.org/10.1016/j.epsl.2024.118792

Yu, S., Tosi, N., Schwinger, S., Maurice, M., Breuer, D., & Xiao, L. (2019). Overturn of Ilmenite‐Bearing Cumulates in a Rheologically Weak Lunar Mantle. Journal of Geophysical Research: Planets, 124(2), 418–436. https://doi.org/10.1029/2018je005739

Yurimoto, H., & Ohtani, E. (1992). Element partitioning between majorite and liquid: A secondary ion mass spectrometric study. Geophysical Research Letters, 19(1), 17–20. https://doi.org/10.1029/91gl02824

Zhang, N., Dygert, N., Liang, Y., & Parmentier, E. M. (2017). The effect of ilmenite viscosity on the dynamics and evolution of an overturned lunar cumulate mantle. Geophysical Research Letters, 44(13), 6543–6552. https://doi.org/10.1002/2017gl073702

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Megan D. Mouser, Nicholas Dygert