Identifying fluid-fluxed versus decompression melting in the Tonga island arc – Lau back-arc region
Read Online
PDF
Data, Code, and Outputs

Keywords

geochemistry
subduction zones
Tonga
Uranium series
back-arc
decompression melting
fluid flux melting

How to Cite

Beier, C., Turner, S. P., Schoenhofen-Romer, M. V., Brandl, P. A., Haase, K. M., McGee, L., & Arculus, R. J. (2025). Identifying fluid-fluxed versus decompression melting in the Tonga island arc – Lau back-arc region. Advances in Geochemistry and Cosmochemistry, 1(2), 718. https://doi.org/10.33063/agc.v1i2.718

Abstract

Partial melting at destructive plate margins is usually linked to fluid addition from the subducting plate, but decompression melting and asymmetric “wet” and “dry” wings of the melting zone at back-arc spreading centres have also been invoked. Distinguishing between these models has proved difficult using conventional geochemical data. Here, we combine 230U–238Th disequilibria, H2O contents and Ba/Nb ratios on glasses to identify fluid-fluxed versus decompression melting across the Tonga Arc – Lau back-arc. From the arc front into the back-arc, (230U/238Th) disequilibria range from 0.55 to 1.14, H2O contents from 2 to 0.25 wt% and Ba/Nb ratios from 1000 to 5. The (230U/238Th) disequilibria and ratios of fluid mobile to immobile trace elements are amongst the most extreme reported from arcs and change to values typical of mid-ocean ridges. Our data provide evidence for the co-existence of both fluid-fluxed and decompression melting regimes and suggest that back-arcs situated close to the arc may be able to draw subduction-related material into the spreading axis. The systematic compositional change with increasing distance between arc and back-arc does not reflect changes in dehydration reaction in the subducting slab, but different proportions of slab material contributing to the back-arc spreading regime. A stepwise change at >100 km distance between arc and back-arc marks the separation between fluid-fluxed and decompression melting domains occurring over relatively short spatial distances. These are also associated with a transitional change in ridge morphology due to the appearance of an axial magma chamber at the southern East Lau Spreading Centre.

https://doi.org/10.33063/agc.v1i2.718
Read Online
PDF
Data, Code, and Outputs

References

Arai, R., & Dunn, R. A. (2014). Seismological study of Lau back arc crust: Mantle water, magmatic differentiation, and a compositionally zoned basin. Earth and Planetary Science Letters, 390, 304–317. https://doi.org/10.1016/j.epsl.2014.01.014

Bach, W., Hegner, E., & Erzinger, J. (1998). Chemical fluxes in the Tonga subduction zone; evidence from the southern Lau Basin. Geophysical Research Letters, 25(9), 1467–1470. https://doi.org/10.1029/98gl00840

Baker, J., Peate, D., Waight, T., & Meyzen, C. (2004). Pb isotopic analysis of standards and samples using a ²⁰⁷Pb–²⁰⁴Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS. Chemical Geology, 211(3), 275–303. https://doi.org/10.1016/j.chemgeo.2004.06.030

Batiza, R. (1989). Seamounts and seamount chains of the eastern Pacific. In E. L. Winterer, D. M. Hussong, & R. W. Decker (Eds.), The eastern Pacific Ocean and Hawaii: Vol. N. Geological Society of America. https://doi.org/10.1130/DNAG-GNA-N

Batiza, R., & Niu, Y. (1992). Petrology and magma chamber processes at the East Pacific Rise approximately 9°30’N. Journal of Geophysical Research, B, Solid Earth and Planets, 97(5), 6779–6797. https://doi.org/10.1029/92JB00172

Bebout, G. E. (2007). Metamorphic chemical geodynamics of subduction zones. Earth and Planetary Science Letters, 260(3–4), 373–393. https://doi.org/10.1016/j.epsl.2007.05.050

Beier, C., Brandl, P. A., Lima, S. M., & Haase, K. M. (2018). Tectonic control on the genesis of magmas in the New Hebrides arc (Vanuatu). Lithos, 312–313, 290–307. https://doi.org/10.1016/j.lithos.2018.05.011

Beier, C., Haase, K. M., Brandl, P. A., & Krumm, S. H. (2017). Primitive andesites from the Taupo Volcanic Zone formed by magma mixing. Contributions to Mineralogy and Petrology, 172(5), 33. https://doi.org/10.1007/s00410-017-1354-0

Beier, C., Turner, S. P., Haase, K. M., Pearce, J. A., Münker, C., & Regelous, M. (2017). Trace Element and Isotope Geochemistry of the Northern and Central Tongan Islands with an Emphasis on the Genesis of High Nb/Ta Signatures at the Northern Volcanoes of Tafahi and Niuatoputapu. Journal of Petrology, 58(6), 1073–1106. https://doi.org/10.1093/petrology/egx047

Beier, C., Turner, S. P., Schoenhofen-Romer, M. V., Brandl, P. A., Haase, K. M., McGee, L., & Arculus, R. J. (2025). Geochemical glass data for the contribution: Identifying fluid-fluxed versus decompression melting in the Tonga island arc – Lau back arc region [dataset]. PANGAEA. https://doi.org/10.1594/PANGAEA.978496

Beier, C., Turner, S. P., Sinton, J. M., & Gill, J. B. (2010). Influence of subducted components on back-arc melting dynamics in the Manus Basin. Geochemistry, Geophysics, Geosystems, 11, Q0AC03. https://doi.org/10.1029/2010gc003037

Bevis, M., Taylor, F. W., Schutz, B. E., Recy, J., Isacks, B. L., Helu, S., Singh, R., Kendrick, E., Stowell, J., Taylor, B., & Calmantli, S. (1995). Geodetic observations of very rapid convergence and back-arc extension at the Tonga arc. Nature, 374(6519), 249–251. https://doi.org/10.1038/374249a0

Bézos, A., Escrig, S., Langmuir, C. H., Michael, P. J., & Asimow, P. D. (2009). Origins of chemical diversity of back-arc basin basalts: A segment-scale study of the Eastern Lau Spreading Center. Journal of Geophysical Research, 114(B06212). https://doi.org/10.1029/2008jb005924

Boespflug, X., Dosso, L., Bougault, H., & Joron, J.-L. (1990). Trace element and isotopic (Sr, Nd) Geochemistry of Volcanic Rocks from the Lau Basin. Geologisches Jahrbuch. Reihe D. Mineralogie, Petrographie, Geochemie, Lagerstättenkunde, 92, 503–516.

Bourdon, B., Turner, S., & Allegre, C. (1999). Melting dynamics beneath the Tonga-Kermadec island arc inferred from 231Pa- 235U systematics. Science, 286(5449), 2491–2493. https://doi.org/10.1126/science.286.5449.2491

Bourdon, B., Turner, S., & Dosseto, A. (2003). Dehydration and partial melting in subduction zones: Constraints from U-series disequilibria. Journal of Geophysical Research: Solid Earth, 108(B6), n/a-n/a. https://doi.org/10.1029/2002JB001839

Bourdon, B., Turner, S. P., Henderson, G. M., & Lundstrom, C. C. (2003). Introduction to U-series geochemistry. In Uranium-series geochemistry: Vol. 52; (pp. 1–21). Mineralogical Society of America. https://doi.org/10.2113/0520001

Brandl, P. A., Beier, C., Regelous, M., Abouchami, W., Haase, K. M., Garbe-Schönberg, D., & Galer, S. J. G. (2012). Volcanism on the flanks of the East Pacific Rise: Quantitative constraints on mantle heterogeneity and melting processes. Chemical Geology, 289–299(3–4), 41–56. https://doi.org/10.1016/j.chemgeo.2011.12.015

Cagnioncle, A.-M., Parmentier, E. M., & Elkins-Tanton, L. T. (2007). Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries. Journal of Geophysical Research: Solid Earth, 112(B9). https://doi.org/10.1029/2007JB004934

Castillo, P. R., Lonsdale, P. F., Moran, C. L., & Hawkins, J. W. (2009). Geochemistry of mid-Cretaceous Pacific crust being subducted along the Tonga-Kermadec Trench: Implications for the generation of arc lavas. Lithos, 112(1–2), 87–102. https://doi.org/10.1016/j.lithos.2009.03.041

Caulfield, J., Turner, S., Arculus, R., Dale, C., Jenner, F. E., Pearce, J., Macpherson, C. G., & Handley, H. K. (2012). Mantle flow, volatiles, slab-surface temperatures and melting dynamics in the north Tonga arc–Lau back-arc basin. Journal of Geophysical Research, 117(B11209). https://doi.org/10.1029/2012JB009526

Chen, J. H., Lawrence Edwards, R., & Wasserburg, G. J. (1986). ²³⁸U, ²³⁴U and ²³²Th in seawater. Earth and Planetary Science Letters, 80(3–4), 241–251. https://doi.org/10.1016/0012-821X(86)90108-1

Collier, J., & Sinha, M. (1990). Seismic images of a magma chamber beneath the Lau Basin back-arc spreading centre. Nature, 346(6285), 646–648. https://doi.org/10.1038/346646a0

Conder, J. A., Wiens, D. A., & Morris, J. (2002). On the decompression melting structure at volcanic arcs and back-arc spreading centers. Geophysical Research Letters, 29(15), 17-1-17–4. https://doi.org/10.1029/2002GL015390

Cooper, L., Plank, T., Arculus, R., Hauri, E., & Kelley, K. A. (2022). Arc–Backarc Exchange Along the Tonga–Lau System: Constraints From Volatile Elements. Journal of Petrology, 63(8), egac072. https://doi.org/10.1093/petrology/egac072

Davies, G. F. (1999). Dynamic Earth; plates, plumes and mantle convection. Cambridge University Press. https://doi.org/10.1017/CBO9780511605802

Davy, B., & Collot, J. Y. (2000). The Rapuhia Scarp (northern Hikurangi Plateau) - Its nature and subduction effects on the Kermadec Trench. Tectonophysics, 328(3–4), 269–295. https://doi.org/10.1016/S0040-1951(00)00211-0

Ding, S., Plank, T., Wallace, P. J., & Rasmussen, D. J. (2023). Sulfur_X: A Model of Sulfur Degassing During Magma Ascent. Geochemistry, Geophysics, Geosystems, 24(4), e2022GC010552. https://doi.org/10.1029/2022GC010552

Dosseto, A., Turner, S., & Douglas, G. B. (2006). Uranium-series isotopes in colloids and suspended sediments: Timescale for sediment production and transport in the Murray–Darling River system. Earth and Planetary Science Letters, 246(3–4), 418–431. https://doi.org/10.1016/j.epsl.2006.04.019

Dunn, R. A., & Martinez, F. (2011). Contrasting crustal production and rapid mantle transitions beneath back-arc ridges. Nature, 469(7329), 198–202. https://doi.org/10.1038/nature09690

Elliott, T. (2004). Tracers of the Slab. Inside the Subduction Factory, 23–45. https://doi.org/10.1029/138GM03

Escrig, S., Bézos, A., Goldstein, S., Langmuir, C., & Michael, P. (2009). Mantle source variations beneath the Eastern Lau Spreading Center and the nature of subduction components in the Lau basin-Tonga arc system. Geochemistry, Geophysics, Geosystems, 10(4), 1–33. https://doi.org/10.1029/2008GC002281

Escrig, S., Bézos, A., Langmuir, C. H., Michael, P. J., & Arculus, R. (2012). Characterizing the effect of mantle source, subduction input and melting in the Fonualei Spreading Center, Lau Basin: Constraints on the origin of the boninitic signature of the back-arc lavas. Geochemistry, Geophysics, Geosystems, 13(10), Q10008. https://doi.org/10.1029/2012GC004130

Ewart, A., Bryan, W. B., Chappell, B. W., & Rudnick, R. L. (1994). Regional geochemistry of the Lau-Tonga arc and backarc systems. In J. W. Hawkins, L. M. Parson, J. F. Allan, N. Abrahamsen, U. Bednarz, G. Blanc, S. H. Bloomer, R. Boe, T. R. Bruns, W. B. Bryan, G. C. H. Chaproniere, P. D. Clift, A. Ewart, M. G. Fowler, J. M. Hergt, R. A. Hodkinson, D. L. Lavoie, J. K. Ledbetter, C. J. MacLeod, … E. M. Maddox (Eds.), Proceedings of the Ocean Drilling Program, scientific results, Lau Basin; covering Leg 135 of the cruises of the drilling vessel JOIDES Resolution, Suva Harbor, Fiji, to Honolulu, Hawaii, sites 834-841, 17 December 1990-28 February 1991. (Vol. 135, pp. 385–425). Texas A & M University, Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.135.141.1994

Ewart, A., Collerson, K. D., Regelous, M., Wendt, J. I., & Niu, Y. (1998). Geochemical evolution within the Tonga-Kermadec-Lau arc-back-arc systems; the role of varying mantle wedge composition in space and time. Journal of Petrology, 39(3), 331–368. https://doi.org/10.1093/petrology/39.3.331

Ewart, A., & Hawkesworth, C. (1987). The Pleistocene Recent Tonga Kermadec Arc Lavas - Interpretation of New Isotopic and Rare-Earth Data in Terms of a Depleted Mantle Source Model. Journal of Petrology, 28(3), 495–530. https://doi.org/10.1093/petrology/28.3.495

Falloon, T. J., Malahoff, A., Zonenshain, L. P., & Bogdanov, Y. (1992). Petrology and Geochemistry of Back-Arc Basin Basalts from Lau Basin Spreading Ridges at 15°, 18° and 19°,S. Mineralogy and Petrology, 47(1), 1–35. https://doi.org/10.1007/Bf01165295

Forsyth, D. W., Webb, S. C., Dorman, L. M., & Shen, Y. (1998). Phase Velocities of Rayleigh Waves in the MELT Experiment on the East Pacific Rise. Science, 280(5367), 1235–1238. https://doi.org/10.1126/science.280.5367.1235

Frenzel, G., Mühe, R., & Stoffers, P. (1990). Petrology of the volcanic rocks from the Lau Basin, Southwest Pacific; Petrologie der Vulkangesteine des Lau-Beckens, Südwest-Pazifik (pp. 395–479). Schweizerbart, Stuttgart.

Fretzdorff, S., & Haase, K. M. (2002). Geochemistry and petrology of lavas from the submarine flanks of Réunion Island (western Indian Ocean): Implications for magma genesis and the mantle source. Mineralogy and Petrology, 75(3–4), 153–184. https://doi.org/10.1007/s007100200022

Fretzdorff, S., Haase, K. M., Leat, P. T., Livermore, R. A., Garbe-Schönberg, C. D., Fietzke, J., & Stoffers, P. (2003). 230Th- 238U disequilibrium in East Scotia backarc basalts; implications for slab contributions. Geology, 31(8), 693–696. https://doi.org/10.1130/G19469.1

Fretzdorff, S., Schwarz-Schampera, U., Gibson, H. L., Garbe-Schönberg, C. D., Hauff, F., & Stoffers, P. (2006). Hydrothermal activity and magma genesis along a propagating back-arc basin: Valu Fa Ridge (southern Lau Basin). Journal of Geophysical Research, 111(B8). https://doi.org/10.1029/2005JB003967

Galley, C., Baxter, A., Hannington, M., King, M., Bethell, E., Lelièvre, P., Fassbender, M., & Jamieson, J. (2024). Quantifying Crustal Growth in Arc-Backarc Systems: Gravity Inversion Modeling of the Lau Basin. Journal of Geophysical Research: Solid Earth, 129(12), e2024JB029013. https://doi.org/10.1029/2024JB029013

George, R., Turner, S., Hawkesworth, C., Morris, J., Nye, C., Ryan, J., & Zheng, S.-H. (2003). Melting processes and fluid and sediment transport rates along the Alaska-Aleutian arc from an integrated U-Th-Ra-Be isotope study. Journal of Geophysical Research, 108(B5, 2252), doi:10.1029/2002JB001916. https://doi.org/10.1029/2002jb001916

George, R., Turner, S., Morris, J., Plank, T., Hawkesworth, C. J., & Ryan, J. (2005). Pressure-temperature-time paths of sediment recycling beneath the Tonga-Kermadec arc. Earth and Planetary Science Letters, 233(1–2), 195–211. https://doi.org/10.1016/j.epsl.2005.01.020

Gill, J. B. (1976). Composition and Age of Lau Basin and Ridge Volcanic-Rocks - Implications for Evolution of an Interarc Basin and Remnant Arc. Geological Society of America Bulletin, 87(10), 1384–1395. https://doi.org/10.1130/0016-7606(1976)87<1384:Caaolb>2.0.Co;2

Goldberg, S. L., & Holt, A. F. (2024). Characterizing the Complexity of Subduction Zone Flow With an Ensemble of Multiscale Global Convection Models. Geochemistry, Geophysics, Geosystems, 25(2), e2023GC011134. https://doi.org/10.1029/2023GC011134

Haase, K. A., Stroncik, N., Garbe-Schönberg, D., & Stoffers, P. (2006). Formation of island are dacite magmas by extreme crystal fractionation: An example from Brothers Seamount, Kermadec island arc (SW Pacific). Journal of Volcanology and Geothermal Research, 152(3–4), 316–330. https://doi.org/10.1016/j.jvolgeores.2005.10.010

Haase, K. M., Fretzdorff, S., Mühe, R., Garbe-Schönberg, D., & Stoffers, P. (2009). A geochemical study of off-axis seamount lavas at the Valu Fa Ridge: Constraints on magma genesis and slab contributions in the southern Tonga subduction zone. Lithos, 112(1–2), 137–148. https://doi.org/10.1016/j.lithos.2009.05.041

Haase, K. M., Worthington, T. J., Stoffers, P., Garbe-Schönberg, C.-D., & Wright, I. (2002). Mantle dynamics, element recycling, and magma genesis beneath the Kermadec Arc-Havre Trough. Geochemistry, Geophysics, Geosystems, 3(11), 1071. https://doi.org/10.1029/2002GC000335

Hall, P. S., & Kincaid, C. (2001). Diapiric flow at subduction zones: a recipe for rapid transport. Science, 292(5526), 2472–2475. https://doi.org/10.1126/science.1060488

Hawkins, J. W. (1976). Petrology and Geochemistry of Basaltic Rocks of Lau Basin. Earth and Planetary Science Letters, 28(3), 283–297. https://doi.org/10.1016/0012-821x(76)90190-4

Hawkins, J. W. (1995a). Evolution of the Lau Basin—Insights from ODP Leg 135. In Active Margins and Marginal Basins of the Western Pacific (pp. 125–173). American Geophysical Union. https://doi.org/10.1029/GM088p0125

Hawkins, J. W. (1995b). The Geology of the Lau Basin. In B. Taylor (Ed.), Backarc Basins: Tectonics and Magmatism (pp. 63–138). Springer US. https://doi.org/10.1007/978-1-4615-1843-3_3

Hawkins, J. W., & Melchior, J. T. (1985). Petrology of Mariana Trough and Lau Basin Basalts. Journal of Geophysical Research-Solid Earth and Planets, 90(Nb13), 1431–1468. https://doi.org/10.1029/JB090iB13p11431

Hayes, G. P., Wald, D. J., & Johnson, R. L. (2012). Slab1. 0: A three-dimensional model of global subduction zone geometries. Journal of Geophysical Research, 117(B1), B01302. https://doi.org/10.1029/2011JB008524

Heinonen, J. S., Spera, F. J., & Bohrson, W. A. (2021). Thermodynamic limits for assimilation of silicate crust in primitive magmas. Geology, 50(1), 81–85. https://doi.org/10.1130/G49139.1

Hergt, J. M., & Hawkesworth, C. J. (1994). Pb-, Sr-, and Nd-isotopic evolution of the Lau Basin; implications for mantle dynamics during backarc opening. In J. W. Hawkins, L. M. Parson, J. F. Allan, N. Abrahamsen, U. Bednarz, G. Blanc, S. H. Bloomer, R. Boe, T. R. Bruns, W. B. Bryan, G. C. H. Chaproniere, P. D. Clift, A. Ewart, M. G. Fowler, J. M. Hergt, R. A. Hodkinson, D. L. Lavoie, J. K. Ledbetter, C. J. MacLeod, … E. M. Maddox (Eds.), Proceedings of the Ocean Drilling Program, scientific results, Lau Basin; covering Leg 135 of the cruises of the drilling vessel JOIDES Resolution, Suva Harbor, Fiji, to Honolulu, Hawaii, sites 834-841, 17 December 1990-28 February 1991. (Vol. 135, pp. 505–517). Texas A & M University, Ocean Drilling Program.

Hergt, J. M., & Woodhead, J. D. (2007). A critical evaluation of recent models for Lau-Tonga arc-backarc basin magmatic evolution. Chemical Geology, 245(1–2), 9–44. https://doi.org/10.1016/j.chemgeo.2007.07.022

Hilton, D. R., Hammerschmidt, K., Loock, G., & Friedrichsen, H. (1993). Helium and argon isotope systematics of the central Lau Basin and Valu Fa Ridge: Evidence of crust/mantle interactions in a back-arc basin. Geochimica et Cosmochimica Acta, 57(12), 2819–2841. https://doi.org/10.1016/0016-7037(93)90392-A

Hirth, G., & Kohlstedt, D. L. (1996). Water in the oceanic upper mantle; implications for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 144(1–2), 93–108. https://doi.org/10.1016/0012-821x(96)00154-9

Jacobs, A. M., Harding, A. J., & Kent, G. M. (2007). Axial crustal structure of the Lau back-arc basin from velocity modeling of multichannel seismic data. Earth and Planetary Science Letters, 259(3–4), 239–255. http://www.sciencedirect.com/science/article/B6V61-4NJ0TN3-%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%206/2/aefeb495cfb6f687fdbd796bf047f256

Jenner, F., & O’Neill, H. (2012). Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochemistry Geophysics Geosystems, 13, Q02005. https://doi.org/10.1029/2011GC004009

Jenner, G. A., Cawood, P. A., Rautenschlein, M., & White, W. M. (1987). Composition of Back-Arc Basin Volcanics, Valu Fa Ridge, Lau Basin - Evidence for a Slab-Derived Component in Their Mantle Source. Journal of Volcanology and Geothermal Research, 32(1–3), 209–222. https://doi.org/10.1016/0377-0273(87)90045-X

Johnson, M. C., & Plank, T. (2000). Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry, Geophysics, Geosystems, 1(12), 1007. https://doi.org/10.1029/1999GC000014

Jull, M., Kelemen, P. B., & Sims, K. (2002). Consequences of diffuse and channelled porous melt migration on uranium series disequilibria. Geochimica et Cosmochimica Acta, 66(23), 4133–4148. https://doi.org/10.1016/S0016-7037(02)00984-5

Karrei, 2008, L. I. (2008). Elevated Pt, Pd and Au concentrations in High- Ca Boninites from the Northern Tonga Arc: evidence for retention of monosulfide solid solution in the source, and the involvement of four independent components during petrogenesis [PhD Thesis]. University of Toronto.

Keller, N., Arculus, R., Hermann, J., & Richards, S. (2008). Submarine back-arc lava with arc signature: Fonualei Spreading Center, northeast Lau Basin, Tonga. Journal of Geophysical Research, 113(B8), 28. https://doi.org/10.1029/2007JB005451

Kelley, K. A., Plank, T., Newman, S., Stolper, E. M., Grove, T. L., Parman, S., & Hauri, E. H. (2010). Mantle Melting as a Function of Water Content beneath the Mariana Arc. Journal of Petrology, 51(8), 1711–1738. https://doi.org/10.1093/petrology/egq036

Kent, A. J. R., Peate, D. W., Newman, S., Stolper, E. M., & Pearce, J. A. (2002). Chlorine in submarine glasses from the Lau Basin: seawater contamination and constraints on the composition of slab-derived fluid. Earth and Planetary Science Letters, 202(2), 361–377. https://doi.org/10.1016/S0012-821x(02)00786-0

Kessel, R., Schmidt, M. W., Ulmer, P., & Pettke, T. (2005). Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth. Nature, 437(7059), 724–727. https://doi.org/10.1038/nature03971

Kimura, J. I. (2017). Modeling chemical geodynamics of subduction zones using the Arc Basalt Simulator version 5. Geosphere, 13(4), 992–1025. https://doi.org/10.1130/Ges01468.1

Kimura, J.-I., & Ariskin, A. A. (2014). Calculation of water-bearing primary basalt and estimation of source mantle conditions beneath arcs: PRIMACALC2 model for WINDOWS. Geochemistry, Geophysics, Geosystems, 15(4), 1494–1514. https://doi.org/10.1002/2014GC005329

Langmuir, C. H., Bézos, A., Escrig, S., & Parman, S. W. (2006). Chemical systematics and hydrous melting of the mantle in back-arc basins. In D. M. Christie, C. R. Fisher, S.-M. Lee, & S. Givens (Eds.), Geophysical Monograph Series (Vol. 166, pp. 87–146). American Geophysical Union. https://doi.org/10.1029/166GM07

Le Maitre, RW. (1989). A classification of igneous rocks and glossary of terms, recommendations of the International union of geological sciences, subcomission on the systematics of igneous rocks. Blackwell.

Ligi, M., Cuffaro, M., Chierici, F., & Calafato, A. (2008). Three-dimensional passive mantle flow beneath mid-ocean ridges: An analytical approach. Geophysical Journal International, 175(2), 783–805. https://doi.org/10.1111/j.1365-246X.2008.03931.x

Loock, G., Mcdonough, W. F., Goldstein, S. L., & Hofmann, A. W. (1990). Isotopic Compositions of Volcanic Glasses from the Lau Basin. Marine Mining, 9(2), 235–245.

Lundstrom, C. C. (2003). Uranium-series Disequilibria in Mid-ocean Ridge Basalts: Observations and Models of Basalt Genesis. In B. Bourdon, G. M. Henderson, C. Lundstrom, & S. P. Turner (Eds.), Uranium-series geochemistry (Vol. 52, pp. 175–214). Mineralogical Society of America. https://doi.org/10.1515/9781501509308-010

Marschall, H. R., & Schumacher, J. C. (2012). Arc magmas sourced from mélange diapirs in subduction zones. Nature Geoscience, 5(11), 1–6. https://doi.org/10.1038/ngeo1634

Massoth, G., Baker, E., Worthington, T., Lupton, J., de Ronde, C., Arculus, R., Walker, S., Nakamura, K., Ishibashi, J., Stoffers, P., Resing, J., Greene, R., & Lebon, G. (2007). Multiple hydrothermal sources along the south Tonga arc and Valu Fa Ridge. Geochemistry Geophysics Geosystems, 8. https://doi.org/10.1029/2007gc001675

McDonough, W. F., & Sun, S.-S. (1995). The composition of the Earth. Chemical Geology, 120(3–4), 223–253. https://doi.org/10.1016/0009-2541(94)00140-4

McGee, L., Beier, C., Smith, I., & Turner, S. (2011). Dynamics of melting beneath a small-scale basaltic system: a U–Th–Ra study from Rangitoto volcano, Auckland volcanic field, New Zealand. Contributions to Mineralogy and Petrology, 162(3), 547–563. https://doi.org/10.1007/s00410-011-0611-x

Morton, J. L., & Pohl, W. (1990). Magnetic anomaly identification in the Lau basin and North Fiji basin, southwest Pacific ocean. Geologisches Jahrbuch. Reihe D. Mineralogie, Petrographie, Geochemie, Lagerstättenkunde, 92, 93–108.

Morton, J. L., & Sleep, N. H. (1985). Seismic reflections from a Lau Basin magma chamber. In D. W. Scholl & T. L. Vallier (Eds.), Geology and offshore resources of Pacific island arcs–Tonga region (Vol. 2, pp. 441–453). Circum-Pacific Council for Energy.

Newman, S., & Lowenstern, J. B. (2002). VolatileCalc: a silicate melt–H₂O–CO₂ solution model written in Visual Basic for excel. Computers & Geosciences, 28(5), 597–604. https://doi.org/10.1016/s0098-3004(01)00081-4

Pearce, J. A., Ernewein, M., Bloomer, S. H., Parson, L. M., Murton, B. J., & Johnson, L. E. (1994). Geochemistry of Lau Basin volcanic rocks: influence of ridge segmentation and arc proximity. Geological Society, London, Special Publications, 81(1), 53–75. https://doi.org/10.1144/gsl.sp.1994.081.01.04

Pearce, J. A., & Parkinson, I. J. (1993). Trace element models for mantle melting: application to volcanic arc petrogenesis. Geological Society, London, Special Publications, 76(1), 373–403. https://doi.org/10.1144/GSL.SP.1993.076.01.19

Pearce, J. A., & Peate, D. W. (1995). Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23(1), 251–285. https://doi.org/10.1146/annurev.ea.23.050195.001343

Pearce, J. A., & Stern, R. J. (2006). Origin of back-arc basin magmas: Trace element and isotope perspectives. In D. M. Christie (Ed.), Back‐Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions (Vol. 166, pp. 63–86). https://doi.org/10.1029/166gm06

Pearce, J. A., Stern, R. J., Bloomer, S. H., & Fryer, P. (2005). Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. Geochemistry Geophysics Geosystems, 6(7). https://doi.org/10.1029/2004GC000895

Peate, D. W., Kokfelt, T. F., Hawkesworth, C. J., Van Calsteren, P. W., Hergt, J. M., & Pearce, J. A. (2001). U-series isotope data on Lau Basin glasses: the role of subduction-related fluids during melt generation in back-arc basins. Journal of Petrology, 42(8), 1449–1470. https://doi.org/10.1093/petrology/42.8.1449

Plank, T., & Langmuir, C. H. (1993). Tracing trace elements from sediment input to volcanic output at subduction zones. Nature, 362, 739–743. https://doi.org/10.1038/362739a0

Plank, T., & Langmuir, C. H. (1998). The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3–4), 325–394. https://doi.org/10.1016/S0009-2541(97)00150-2

Portnyagin, M., Hoernle, K., Plechov, P., Mironov, N., & Khubunaya, S. (2007). Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H₂O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth and Planetary Science Letters, 255(1), 53–69. https://doi.org/10.1016/j.epsl.2006.12.005

Regelous, M., Collerson, K. D., Ewart, A., & Wendt, J. I. (1997). Trace element transport rates in subduction zones; evidence from Th, Sr and Pb isotope data for Tonga-Kermadec Arc lavas. Earth and Planetary Science Letters, 150(3–4), 291–302. https://doi.org/10.1016/S0012-821x(97)00107-6

Schmid, F., Kopp, H., Schnabel, M., Dannowski, A., Heyde, I., Riedel, M., Hannington, M. D., Engels, M., Beniest, A., Klaucke, I., Augustin, N., Brandl, P. A., & Devey, C. (2020). Crustal Structure of the Niuafo’ou Microplate and Fonualei Rift and Spreading Center in the Northeastern Lau Basin, Southwestern Pacific. Journal of Geophysical Research: Solid Earth, 125(6), e2019JB019184. https://doi.org/10.1029/2019JB019184

Scott, S. R., Sims, K. W. W., Reagan, M. K., Ball, L., Schwieters, J. B., Bouman, C., Lloyd, N. S., Waters, C. L., Standish, J. J., & Tollstrup, D. L. (2019). The application of abundance sensitivity filters to the precise and accurate measurement of uranium series nuclides by plasma mass spectrometry. International Journal of Mass Spectrometry, 435, 321–332. https://doi.org/10.1016/j.ijms.2018.11.011

Sims, K. W. W., Pichat, S., Reagan, M. K., Kyle, P. R., Dulaiova, H., Dunbar, N. W., Prytulak, J., Sawyer, G., Layne, G. D., Blichert-Toft, J., Gauthier, P. J., Charette, M. A., & Elliott, T. R. (2013). On the Time Scales of Magma Genesis, Melt Evolution, Crystal Growth Rates and Magma Degassing in the Erebus Volcano Magmatic System Using the ²³⁸U, ²³⁵U and ²³²Th Decay Series. Journal of Petrology, 54(2), 235–271. https://doi.org/10.1093/petrology/egs068

Sleeper, J. D., & Martinez, F. (2014). Controls on segmentation and morphology along the back-arc Eastern Lau Spreading Center and Valu Fa Ridge. Journal of Geophysical Research: Solid Earth, 119(3), 1678–1700. https://doi.org/10.1002/2013JB010545

Sleeper, J. D., Martinez, F., & Arculus, R. (2016). The Fonualei Rift and Spreading Center: Effects of ultraslow spreading and arc proximity on back-arc crustal accretion. Journal of Geophysical Research: Solid Earth, 121(7), 4814–4835. https://doi.org/10.1002/2016JB013050

Spandler, C., Mavrogenes, J., & Hermann, J. (2007). Experimental constraints on element mobility from subducted sediments using high-P synthetic fluid/melt inclusions. Chemical Geology, 239(3–4), 228–249. https://doi.org/10.1016/j.chemgeo.2006.10.005

Spandler, C., & Pirard, C. (2013). Element recycling from subducting slabs to arc crust: A review. Lithos, 170–171, 208–223. https://doi.org/10.1016/j.lithos.2013.02.016

Stewart, M. S., Hannington, M. D., Emberley, J., Baxter, A. T., Krätschell, A., Petersen, S., Brandl, P. A., Anderson, M. O., Mercier-Langevin, P., Mensing, R., Breker, K., & Fassbender, M. L. (2022). A new geological map of the Lau Basin (southwestern Pacific Ocean) reveals crustal growth processes in arc-backarc systems. Geosphere, 18(2), 910–943. https://doi.org/10.1130/GES02340.1

Stoffers, P., Worthington, T. J., Schwarz-Schampera, U., Ackermand, D., Beaudoin, Y., Bigalke, N., Fretzdorff, S., Gibson, H. L., Hekinian, R., Kindermann, A., Kuhn, T., Main, W., Schreiber, K., Timm, C., Tonga’onevai, S., Türkay, M., Unverricht, D., Vailea, A., & Zimmerer, M. (2003). Cruise Report SONNE 167 Louisville Ridge: Dynamics and Magmatism of a mantle plume and its influence on the Tonga-Kermadec subduction system [Report]. Institut für Geowissenschaften, Universität Kiel.

Sykes, L. R. (1966). The seismicity and deep structure of Island arcs. Journal of Geophysical Research (1896-1977), 71(12), 2981–3006. https://doi.org/10.1029/JZ071i012p02981

Syracuse, E. M., van Keken, P. E., & Abers, G. A. (2010). The global range of subduction zone thermal models. Physics of the Earth and Planetary Interiors, 183(1–2), 73–90. https://doi.org/10.1016/j.pepi.2010.02.004

Tatsumi, Y., & Eggins, S. (1995). Subduction Zone Magmatism. In Subduction zone magmatism. Blackwell Science; Frontiers in Earth Sciences.

Taylor, B., & Martinez, F. (2003). Back-arc basin basalt systematics. Earth and Planetary Science Letters, 210(3–4), 481–497. https://doi.org/10.1016/S0012-821X(03)00167-5

Taylor, B., Zellmer, K., Martinez, F., & Goodliffe, A. (1996). Sea-floor spreading in the Lau back-arc basin. Earth and Planetary Science Letters, 144(1), 35–40. https://doi.org/10.1016/0012-821X(96)00148-3

The MELT Seismic Team. (1998). Imaging the Deep Seismic Structure Beneath a Mid-Ocean Ridge: The MELT Experiment. Science, 280(5367), 1215–1218. https://doi.org/10.1126/science.280.5367.1215

The Nautilau Group. (1990). Hydrothermal activity in the Lau Basin: First results from the NAUTILAU Cruise. Eos, Transactions American Geophysical Union, 71(18), 678–679. https://doi.org/10.1029/90EO00166

Tian, L., Castillo, P. R., Hawkins, J. W., Hilton, D. R., Hanan, B. B., & Pietruszka, A. J. (2008). Major and trace element and Sr-Nd isotope signatures of lavas from the Central Lau Basin: Implications for the nature and influence of subduction components in the back-arc mantle. Journal of Volcanology and Geothermal Research, 178(4), 657–670. https://doi.org/10.1016/j.jvolgeores.2008.06.039

Timm, C., Leybourne, M. I., Hoernle, K., Wysoczanski, R. J., Hauff, F., Handler, M., Tontini, F. C., & de Ronde, C. E. J. (2016). Trench-perpendicular Geochemical Variation Between two Adjacent Kermadec Arc Volcanoes Rumble II East and West: the Role of the Subducted Hikurangi Plateau in Element Recycling in Arc Magmas. Journal of Petrology, 57(7), 1335–1360. https://doi.org/10.1093/petrology/egw042

Tollstrup, D., Gill, J., Kent, A., Prinkey, D., Williams, R., Tamura, Y., & Ishizuka, O. (2010). Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab, revisited. Geochemistry Geophysics Geosystems, 11(1), Q01X10-. https://doi.org/10.1029/2009GC002847

Turner, M., Ireland, T., Hermann, J., Holden, P., Padrón-Navarta, J. A., Hauri, E. H., & Turner, S. (2015). Sensitive high resolution ion microprobe – stable isotope (SHRIMP-SI) analysis of water in silicate glasses and nominally anhydrous reference minerals. Journal of Analytical Atomic Spectrometry, 30(8), 1706–1722. https://doi.org/10.1039/C5JA00047E

Turner, S., Beier, C., Niu, Y., & Cook, C. (2011). U-Th-Ra disequilibria and the extent of off-axis volcanism across the East Pacific Rise at 9°30’N, 10°30’N, and 11°20’N. Geochemistry, Geophysics, Geosystems, 12(7), Q0AC12. https://doi.org/10.1029/2010gc003403

Turner, S., Bourdon, B., & Gill, J. B. (2003). Insights into magma genesis at convergent margins from U-series isotopes. In B. Bourdon, G. M. Henderson, C. Lundstrom, & S. P. Turner (Eds.), Uranium-series geochemistry (Vol. 52, pp. 255–310). Mineralogical Society of America. https://doi.org/10.2113/0520255

Turner, S., Evans, P., & Hawkesworth, C. J. (2001). Ultrafast source-to-surface movement of melt at island arcs from ²²⁶Ra-²³⁰Th systematics. Science, 292(5520), 1363–1366. https://doi.org/10.1126/science.1059904

Turner, S., & Hawkesworth, C. (1997). Constraints on flux rates and mantle dynamics beneath island arcs from Tonga-Kermadec lava geochemistry. Nature, 389(6651), 568–573. https://doi.org/10.1038/39257

Turner, S., Regelous, M., Black, S., George, R., & Hawkesworth, C. (2004). U-Series Isotope Constraints on Melting Processes and Degassing Time Scales at Island Arc Volcanoes. 17th Australian Geological Convention, 295.

Turner, S., Regelous, M., Hawkesworth, C., & Rostami, K. (2006). Partial melting processes above subducting plates: Constraints from ²³¹Pa–²³⁵U disequilibria. Geochimica et Cosmochimica Acta, 70(2), 480–503. https://doi.org/10.1016/j.gca.2005.09.004

Vallier, T. L., Jenner, G. A., Frey, F. A., Gill, J. B., Davis, A. S., Volpe, A. M., Hawkins, J. W., Morris, J. D., Cawood, P. A., Morton, J. L., Scholl, D. W., Rautenschlein, M., White, W. M., Williams, R. W., Stevenson, A. J., & White, L. D. (1991). Subalkaline andesite from Valu Fa Ridge, a back-arc spreading center in southern Lau Basin; petrogenesis, comparative chemistry, and tectonic implications. Chemical Geology, 91(3), 227–256. https://doi.org/10.1016/0009-2541(91)90002-9

van Keken, P. E., Hacker, B. R., Syracuse, E. M., & Abers, G. A. (2011). Subduction factory: 4. Depth-dependent flux of H₂O from subducting slabs worldwide. Journal of Geophysical Research-Solid Earth, 116(B1). https://doi.org/10.1029/2010jb007922

von Stackelberg, U., Marchig, V., Müller, P., & Weiser, T. (1990). Hydrothermal mineralization in the Lau and North Fiji basins. Geologisches Jahrbuch. Reihe D. Mineralogie, Petrographie, Geochemie, Lagerstättenkunde, 92, 547–613.

Wei, S. S., Wiens, D. A., van Keken, P. E., & Cai, C. (2017). Slab temperature controls on the Tonga double seismic zone and slab mantle dehydration. Science Advances, 3(1), e1601755. https://doi.org/10.1126/sciadv.1601755

Wei, S. S., Wiens, D. A., Zha, Y., Plank, T., Webb, S. C., Blackman, D. K., Dunn, R. A., & Conder, J. A. (2015). Seismic evidence of effects of water on melt transport in the Lau back-arc mantle. Nature, 518(7539), 395–398. https://doi.org/10.1038/nature14113

Wiedicke, M., & Collier, J. (1993). Morphology of the Valu Fa Spreading Ridge in the Southern Lau Basin. Journal of Geophysical Research-Solid Earth, 98(B7), 11769–11782. https://doi.org/10.1029/93jb00708

Woodhead, J. D., Eggins, S. M., & Johnson, R. W. (1998). Magma genesis in the New Britain island arc: Further insights into melting and mass transfer processes. Journal of Petrology, 39(9), 1641–1668. https://doi.org/10.1093/petrology/39.9.1641

Workman, R. K., & Hart, S. R. (2005). Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1–2), 53–72. https://doi.org/10.1016/j.epsl.2004.12.005

Wu, F., Turner, S., & Schaefer, B. F. (2020). Mélange versus fluid and melt enrichment of subarc mantle: A novel test using barium isotopes in the Tonga-Kermadec arc. Geology, 48(11), 1053–1057. https://doi.org/10.1130/G47549.1

Zellmer, K., & Taylor, B. (2001). A three-plate kinematic model for Lau Basin opening. Geochemistry Geophysics Geosystems, 2, 2000GC000106. https://doi.org/10.1029/2000GC000106

Zha, Y., Webb, S. C., Wei, S. S., Wiens, D. A., Blackman, D. K., Menke, W., Dunn, R. A., & Conder, J. A. (2014). Seismological imaging of ridge–arc interaction beneath the Eastern Lau Spreading Center from OBS ambient noise tomography. Earth and Planetary Science Letters, 408(0), 194–206. https://doi.org/10.1016/j.epsl.2014.10.019

Zhang, N., Behn, M. D., Parmentier, E. M., & Kincaid, C. (2020). Melt Segregation and Depletion During Ascent of Buoyant Diapirs in Subduction Zones. Journal of Geophysical Research: Solid Earth, 125(2), e2019JB018203. https://doi.org/10.1029/2019JB018203

Zhao, D., Xu, Y., Wiens, D. A., Dorman, L. M., Hildebrand, J., & Webb, S. C. (1997). Depth extent of the Lau back-arc spreading center and its relation to subduction processes. Science, 278(5336), 254–257. https://doi.org/10.1126/science.278.5336.254

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Christoph Beier, Simon P. Turner, Milena V. Schoenhofen-Romer, Philipp A. Brandl, Karsten M. Haase, Lucy McGee, Richard J. Arculus