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on the Moon and layered intrusions on Earth. To investigate crystal-chemical controls on
partitioning between clinopyroxenes and garnets in Fe-rich basalts, an experimental study
was conducted utilizing two synthetic compositions, a ferrobasalt (Fe-rich, Al-poor) and an
intermediate basalt (relatively more Al- and Mg-rich) at approximately one log unit below the
iron-wiistite buffer. Experiments were run using piston cylinder and multi-anvil apparatuses
at pressures of 1 to 5 GPa, testing partitioning behavior in phases that precipitated from
the endmember haplobasalts and a 50-50 mixture. We find that Al substitution into the
clinopyroxene tetrahedral site influences 1+, 3+ and 4+ cation partitioning, with more
aluminous samples having the highest partition coefficients for large ion lithophile elements,
trivalent rare earth elements (REEs), and high field strength elements. Low-Al ferrobasalt
clinopyroxenes exhibit heavy REE (HREE) partition coefficient anomalies, suggesting HREE
substitution onto the M1 site, and a positive Eu partitioning anomaly. In contrast, higher-Al
intermediate basalt clinopyroxenes have negative Eu partitioning anomalies and no HREE
partitioning anomaly. The almandine-type garnets produced in higher-pressure experiments
provide novel constraints for lunar-relevant systems. Comparison with literature data
suggests these Fe-rich garnets exhibit partitioning behavior similar to garnets in more
magnesian systems. Experimentally determined partition coefficients and new predictive
models are applied to the petrogenesis of Fe-rich lunar basalts to evaluate their potential
origins. To explain Yb/Sm ratios of black glasses, successful models invoke a minor garnet
component in their mantle sources.

1 Introduction

require coupled substitution when substituting into a crystal
lattice site that would typically house a 2+ cation (e.g.,

1.1 Pyroxene and Garnet Crystal Chemistry

Trace element compositions of mafic, rock-forming min-
erals (e.g., olivine, orthopyroxene, clinopyroxene, garnet)
are records of melting and fractionation processes during
igneous petrogenesis. The distribution of incompatible trace
elements among these minerals and coexisting silicate liquids
is important for interpreting the significance of elemental
fractionations (Sun and Liang, 2013). In particular, the
rare earth element (REE) group is the most commonly
applied in petrogenetic modeling (Gallahan and Nielsen,
1992). In addition to REEs, high field strength elements
(HFSEs) are also useful petrogenetic indicators. Both REEs
and HFSEs have high valence states (e.g., 3+, 4+) which

Mg, Fe). Experiments conducted on terrestrial Mg-rich
systems found that an important coupled substitution of
3+ cations in pyroxene is substitution of ARt into the
tetrahedrally coordinated site usually occupied by Si** (e.g.,
Colson et al., 1989; Gallahan and Nielsen, 1992; Hauri et al.,
1994; Gaetani and Grove, 1995). How this dependence on
Al translates to Fe-rich systems is not well understood
(Dygert et al., 2014).

Among the major minerals in planetary mantles, clinopy-
roxenes and garnets have more favorable structures to
host incompatible trace elements. Clinopyroxenes, with
a general formula of (M2)(M1)T,Og, preferentially host
trace elements because of the large size of the M2 site in
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the crystal structure. The M2 site normally houses Ca®*
and is large enough to accommodate substitution of cations
with larger ionic radii (e.g., Cameron and Papike, 1981;
Gallahan and Nielsen, 1992; Blundy and Wood, 2003; Olin
and Wolff, 2010). The M1 site is less distorted (Cameron
and Papike, 1981) and houses cations with smaller radii,
e.g., Mg?>", Fe®*. Therefore, the M1 site is typically not the
subject of focus when considering partitioning of elements
with larger radii (e.g., REEs, HFSE), with the exception
of Fe- and alkaline-rich systems where heavy REEs may
partition into the M1 site in 6-fold coordination (Olin and

Wolff, 2010; Dygert et al., 2014; Baudouin et al., 2020).

A proposed charge-balancing coupled substitution of REE
and HFSE into the M1 and M2 sites is substitution of AI**
in the tetrahedral site, but there can be other coupled
substitution mechanisms such as jadeite component or
vacancy substitution.

The garnet crystal structure (X3Y,Si3O12) has an “X"
site, which generally hosts Ca®*, Mg?", and Fe®*, however,
this site can also incorporate incompatible trace elements
due to the larger size of cations that normally occupy the
site, much like clinopyroxenes (Novak and Gibbs, 1971; van
Westrenen et al., 2001). The garnet trace element signature
is characteristic in its preference for heavy REEs (HREEs),
with concentrations up to several orders of magnitude
greater than light REEs (LREEs) in natural garnets in
igneous and metamorphic systems (e.g., Sun and Liang,
2013; Tual et al., 2022; Blatter et al., 2023).

Clinopyroxene- and garnet-melt trace element partitioning
studies have mainly focused on Mg-rich basaltic systems
(e.g., Yurimoto and Ohtani, 1992; Gaetani and Grove, 1995;
Johnson, 1998; Salters and Longhi, 1999; van Westrenen
et al., 1999; Sun and Liang, 2012; Bédard, 2014; Sun et al.,
2017). These studies found the main controls on trace
element partitioning are the compositions of the mineral and

melt, oxygen fugacity (fO,), and pressure and temperature.

Melt polymerization may strongly affect clinopyroxene-melt
partition coefficients in silicic systems (Olin and Wolff,
2010), but in basaltic systems, melt structure appears to
play a subordinate role to crystal chemistry, at least for the
REEs (e.g., Sun and Liang, 2012).

In Fe-rich systems, clinopyroxene composition affects
partitioning of heavy REEs (Olin and Wolff, 2010; Dygert
et al., 2014), where in 6-fold coordination in the M1 site
has been noted. This behavior could be attributed to the
similar ionic radii between HREE in 6-fold coordination and
Fe?* (e.g., Lu in 6-fold-0.861 A vs. 8-fold-0.977 A, and
Fe?t in 6-fold-0.780 A, Shannon, 1976). Existing predictive
models for clinopyroxene-melt trace element partitioning
(Sun and Liang, 2012; Dygert et al., 2014, 2015) are not
suited to model the HREE partitioning onto the M1 lattice
site. The nature of charge balancing coupled substitutions

in Fe-rich systems is also uncertain (Dygert et al., 2014).

Evaluating the influence of pyroxene Fe and Al content on
trace element partitioning behavior requires new constraints
from experiments conducted in ferrobasaltic systems, which
are presented in this work.

1.2 The Importance of Fe-rich Minerals in Lunar
Petrogenesis

Experimental compositions presented in this work are analo-
gous to the lunar magma ocean and thus the trace element
partitioning data from the experiments are ultimately applied
to the petrogenesis of lunar basalts (see Section 4.5). Here
we provide general lunar context for the partitioning data.
Lunar basalts range in composition, e.g., in their Fe and Ti
contents, which vary up to 24 wt% in FeO and <1 to 14 wt%
TiO5 (e.g., Papike et al., 1976; Neal and Taylor, 1992), with
fOss estimated to be ~IW-1 (e.g., Wadhwa, 2008). The
compositional diversity reflects the differentiation history of
the Moon. Geophysical and petrological constraints from
sample analysis suggest that the Moon's mantle formed
distinct layers during magma ocean solidification (Ohtani,
1985; Warren, 1985; Snyder et al.,, 1992). One such
layer represents the end of the magma ocean solidification
(~95-99% crystallization; Shearer and Papike, 1999) and
precipitated from a residual liquid highly enriched in incom-
patible elements such as potassium, REE, phosphorous,
uranium, and thorium (referred to as urKREEP; Warren,
1985). Evidence for this layer, which would have com-
prised dense ilmenite and Fe-rich clinopyroxene cumulates,
is exhibited in the enrichment of Ti and a KREEPYy trace
element signature in lunar basalt samples (e.g., Walker
et al., 1975; Hess et al., 1978; Snyder et al., 1992). The
KREEPYy ilmenite and clinopyroxene-rich late magma ocean
cumulates would have been much denser than the underlying
cumulates, resulting in a gravitationally unstable density
stratification, causing gravitational instabilities to form and
sink into the interior (e.g., Kesson and Ringwood, 1976;
Hess and Parmentier, 1995; Zhang et al., 2017; Li et al.,
2019; Yu et al., 2019). This process would have mixed
the dense ilmenite and KREEP-bearing material with the
underlying mafic cumulates forming Ti- and KREEP-rich
hybridized mantle source regions capable of producing the
compositional diversity of lunar basalts found on the surface
of the Moon today.

Lunar basalts and glasses sourced from the Moon's inte-
rior and are broadly divided into categories based on their Ti
content (very low-Ti, low-Ti, and high-Ti). Lunar glasses
are referred to by color which is a proxy for Ti abundance
(with increasing Ti, green, yellow, orange, black) (Shearer
et al., 1991; Shearer and Papike, 1993). In addition to the
wide range of Ti and REE abundances exhibited by these
basalts, there is also variation in their Hf and Nd isotopic
compositions (e.g., Unruh et al., 1984; Beard et al., 1998;
Miinker, 2010) which suggests mixing of distinct magma
ocean cumulates in their mantle sources (hybridization),
facilitated by cumulate mantle overturn.

The deep lunar mantle is thought to consist of olivine,
orthopyroxene, and clinopyroxene (e.g., Snyder et al., 1992).
However, garnet has been proposed to exist in the deep
lunar mantle due to the ratios of HFSE in lunar samples,
predictions of the lunar mantle mineralogy from fractional
crystallization models, and experimental investigations of
the sound velocities of the lunar mantle (Beard et al.,
1998; Neal, 2001; Draper et al., 2006; Barr and Grove,

Mouser and Dygert (2025) Adv. Geochem. Cosmochem. 1(2): 719, https://doi.org/10.33063/agc.v1i2.719 2


https://doi.org/10.33063/agc.v1i2.719

An experimental study of clinopyroxene- and garnet-melt trace element partitioning in Fe-rich basaltic systems

Table 1. Major element experimental compositions.

SiO;  TiO2 AlO; MgO CaO MnO FeO Na,O K;O Py0s Dopant Total
Intermediate Basalt 35.85 2.72 5.04 2.69 10.35 0.63 39.44 0.16 0.28 0.53 0.34 98.03
1o StDev 0.24 0.04 0.39 0.03 0.07  0.07 0.19 0.02 0.01 0.02 0.02
Ferrobasalt 3458 3.68 0.49 1.01 10.70 1.10 4457 0.10 0.16 0.48 0.33 97.20
1o StDev 0.57 0.11 0.01 0.03 0.22 0.03 1.04 0.01 0.01 0.01 0.02
FR1290a 4416 4.05 8.67 0.26 10.89 0.70 29.86 0.50 0.36 0.40 99.85

Table 2. Experimental run conditions and phases for all experiments. Pyx = pyroxene, Gt = garnet, IIm = ilmenite, Ol =

olivine.
Experiment Composition Pressure  Superliquidus Dwell Dwell  Phases
Temperature  Temperature Period
(GPa) O O (h)

FR1290-Hd-1 Ferrobasalt 1 1,300 1,120 48 Pyx + Fe Metal + Glass
FR1290-Aug-2 Intermediate Basalt 1 1,300 1,150 56 Pyx + Glass
FR1290-5050HdAug-1  50-50 Mix 1 1,300 1,150 51 Pyx + Fe Metal + Glass
FR1290-Hd-3 Ferrobasalt 2 1,350 1,175 59 Pyx + Fe Metal + Glass
FR1290-Aug-3 Intermediate Basalt 2 1,350 1,175 48 Pyx + Gt + Fe Metal

+ Glass
FR1290-5050HdAug-2  50-50 Mix 2 1,350 1,175 58 Pyx + Fe Metal + Glass
FR1290-Aug-4 Intermediate Basalt 3 1,390 1,190 45 Pyx + Gt + IIm

+ Fe Metal + Glass
FR1290-Aug-5 Intermediate Basalt 5 1,445 1,245 43 Pyx + Gt + Ol

+ Fe Metal + Glass

2013; Jing et al., 2022; Wood et al., 2024). Thus, garnet
may be an important mineral to consider for deep magma
genesis on the Moon and is tested, along with other lunar
relevant minerals (olivine, orthopyroxene, clinopyroxene), in
the applications of this work.

2 Methods

2.1 Compositions

A composition based on a late lunar magma ocean residual
liquid analogue (FR-1290) from Longhi (2003) was used
to prepare two endmember basalt compositions to explore

the effects of Al and Fe on partitioning in Fe-rich systems.

One has no added Al and a higher Fe content (ferrobasalt),
while the other has a more moderate Fe content and higher
Al (Mg# of approximately 50, where Mg# is defined as
100xMg/(Mg+Fe), in moles) representing an intermediate
basalt. These mixtures were made from reagent grade
oxide and carbonate powders ground in an agate mortar
and pestle for 6 hours. Both compositions were spiked with
a REE/HFSE/alkali earth element mixture of ~0.3 wt%
of the total composition. After the grinding and doping
process, the compositions were decarbonated at 900 °C
for 24 hours in an alumina crucible. After decarbonation
the powders were conditioned to one log unit below the
iron-wiistite (IW) buffer at 800 °C using Ho/CO, mixture
(Deines et al., 1974, 1976) in a 1-bar horizontal gas mixing
furnace at Brown University. Major element compositions
of glassed samples of both compositions are presented in
Table 1. For a list of analyzed trace elements, see Table S2

in the data and software publication for this work (Mouser,
2025).

2.2 Experimental Techniques

Experiments were conducted at 1 to 2.5 GPa in 150-ton end-
loaded piston cylinder (PC) apparatuses at the University of
Tennessee (UT) and Boyd-England style PC at the Earth
and Planets Laboratory (EPL), Carnegie Institution for
Science in graphite lined Mo (UT) or Pt (EPL) capsules.
Assemblies used NaCl (UT) or Talc cells (EPL) as a con-
fining medium and were placed in 3/4" pressure vessels
(1/2" for 2.5 GPa) and pressurized before heating. A 5 GPa
experiment was conducted in a 1500-ton Walker-type multi-
anvil apparatus at EPL in an 18/11 MgO cast octahedra
(Bertka and Fei, 1997) in a graphite lined Pt capsule.
The programs set for each experiment were a rapid ramp
to superliquidus temperature (1300-1445°C) at a rate of
70 °C/min, dwell for 1 hour, a slow cool to final temperature
(1120-1245°C) at a rate of 0.1 °C/min, and dwelling at
the target temperature for at least 43 hours before an
isobaric quench (Table 2). The range of superliquidus
and final dwell temperatures were selected to produce
appropriate proportions of crystals and glass, with the more
magnesian experiments requiring higher temperatures than
the ferrobasalt. Initial superliquidus temperature estimates
at 1 GPa were based on experiments testing the base FR-
1290 composition from Longhi (2003) and confirmed with
a glass experiment for each composition.
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Ferrobasalt 50-50 Mix

Intermediate Basalt

Figure 1. Representative backscattered electron micrographs of recovered experiments of ferrobasalt (a-b) and 50-50 mix
(c-d) compositions at 1 and 2 GPa and intermediate basalt composition (e-h) at 1-5 GPa. Pyx = Pyroxene, Gt = Garnet,

[Im = limenite, Ol = Olivine.

2.3 Electron Microprobe Analysis

After the experiments were quenched, they were mounted
in epoxy and polished for electron probe micro analysis
(EPMA). Analyses were conducted using a Cameca SX100
instrument at UT and JEOL JXA-8530F instrument at EPL.
Major elements were analyzed at an accelerating voltage
of 15 kV, a beam current of 20 nA, and a 2 uym spot size.
Backscattered electron images of each experimental charge
are shown in Figure 1.

2.4 Laser Ablation Inductively Coupled Plasma Mass
Spectrometry

Trace element data were collected by laser ablation in-
ductively coupled plasma mass spectrometry (LA-ICP-MS)
at the University of Texas at Austin on the recovered
experimental glasses and crystal rims. Spot sizes were
50 pm for all experiments except for the 5 GPa experiment
which used 30 pm spot size due to the smaller sample size.
Data were collected with a laser fluence of 2.03 J/cm? at
20 Hz with a 60 second dwell and 30 second gas blank.
The reference materials were NIST612 and NIST610 used
as primary standards, and NIST610, NIST612, BHVO2G,
and BCR-2G used as secondary standards. Reflected light
images of each experiment with LA-ICP-MS analysis pits
are included in the Supplementary Material (Figures S1 and
S2).

3 Results

3.1 Major Element Chemistry

Major element chemistry of the pyroxenes range from near
endmember hedenbergite in the ferrobasalt experiments
to augite in the intermediate basalt experiment (Table 3,
Figure 2). Here, the rim compositions of the pyroxenes were
used for analysis as they represent the closest approach to
equilibrium with the coexisting melt. Measured glass compo-
sitions are homogeneous across each sample (bulk analyses
reported in Table S1, Mouser, 2025). Intermediate basalt
experiments at 2 GPa and above produced garnet in addition
to pyroxene, with a resulting composition that is more Fe-
rich than previously reported garnet compositions in trace
element partitioning studies, plotting toward the almandine
(Alm) component of the pyrope-grossular-almandine ternary
(Figure 2b). Major element data for ilmenite and olivine
produced in the 2.5 and 5 GPa experiments are published
in Mouser (2025, Table S1).

3.2 Trace Element Chemistry and Partition Coefficients

Trace element abundances (in ppm) in glass, garnet, and py-
roxene are presented in Mouser (2025, Table S2). Elemental
concentrations were used to calculate the experimentally

. - . ;

determined partition coefficients (D, ¢;a—mesr) for each
element: _
1

i _ Ccrysta/ 1

crystal—melt — C,‘ ( )

melt

where Cé,ysta,is the element concentration in the crystal
(garnet or clinopyroxene), C, .., is the element concentra-
tion in the liquid, and i refers to the element. The partition

coefficients are reported in Table 4.
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Figure 2. (a) Average pyroxene rim composition for each experiment; Di = diopside (CaMg(Si, Al)2Og), Hd = hedenbergite

(CaFe(Si, Al)20¢), En = enstatite (MgSiO3), Fs = ferrosilite (FeSiO3).

(b) Average garnet composition from the

2 GPa intermediate basalt experiment; Grs = grossular (CazAlx(SiO4)3, Py = pyrope (MgsAl>(SiO4)3), Alm = almandine
(FesAlx(SiOy4)3), Spess = spessartine (Mn3Alx(SiO4)3). Literature compositions for Fe-rich and intermediate clinopyroxene-
melt experiments from Pertermann and Hirschmann (2002); Olin and Wolff (2010); Dygert et al. (2014); Beard et al.
(2019); Snape et al. (2022). Published garnet compositions from garnet-melt experiments: Yurimoto and Ohtani (1992);
Johnson (1998); Salters and Longhi (1999); van Westrenen et al. (1999, 2000); Klemme et al. (2002); Salters et al.
(2002); Bennett et al. (2004); Corgne and Wood (2004); Pertermann et al. (2004); Walter et al. (2004); Draper et al.
(2006); Dwarzski et al. (2006); Tuff and Gibson (2007); Corgne et al. (2012); Suzuki et al. (2012).

Among the pyroxenes, the 1 GPa Al-poor ferrobasalt sam-
ple exhibited the lowest REE partition coefficients, whereas
the 1 GPa Al-rich intermediate basalt and 2 GPa fer-
robasalt samples have the highest REE partition coefficients
(Figure 3; see Section 4.2 for interpretation). Pyroxenes
produced in high pressure intermediate basalt experiments
that also grew garnet are not included in the formal analysis.
They exhibit partition coefficient variations diverging from
the other experimental results, specifically, steep linear
variations in partition coefficient with ionic radius and lack
of parabolic curvature with ionic radius. We speculate that
these features may be kinetic artifacts produced by con-
comitant growth of pyroxene and garnet or may be a result
of mixed analysis due to the mantling of garnet around the
pyroxene. According to visual inspection (see BSE images,
Figure 1), and time-signal data from LA-ICP-MS analyses,
garnets in these experiments do not appear to be similarly
affected. The garnet experiments exhibit a general trend
of increasing in REE partition coefficient with increasing
experimental pressure and temperature (Figure 3c-d).

The REE partition coefficients for the experimental pyrox-
ene rims (Figure 3a) systematically increase with increasing
Al content as demonstrated by the 1 GPa experimental
series. All experimental pyroxenes exhibit lower LREE
than HREE partition coefficients. A feature of note is
the Eu partitioning anomalies. Eu partitioning anomalies
are commonly observed in systems where the redox sen-
sitive Eu is dominantly in 2+ oxidation state while the
other REEs are 3+, causing Eu to partition differently than
neighboring elements with similar atomic number due to
its different radius and valence state (e.g., Drake, 1975).
The intermediate basalt exhibits a negative Eu partitioning
anomaly while the 1 GPa ferrobasalt, and to a lesser extent
the 1 and 2 GPa 50-50 mix and 2 GPa ferrobasalt, show
positive Eu partitioning anomalies. This is striking as the
experimental assembly and starting material preconditioning

procedure produces an fO, about a log unit below the IW
buffer, as determined from Pt-Fe alloying in included sensors
(Medard et al., 2008; Ji and Dygert, 2024) and the presence
of Fe-metal blebs in most experiments (Figure 1), such
that the experiments were conducted at consistent fO»s
relative to the buffer. A second feature of note is the HREE
partitioning anomalies in the ferrobasaltic pyroxenes. In the
ferrobasalt (and 50-50 mix), there is a significant increase
in HREE partition coefficients Yb and Lu not exhibited by
pyroxene in the intermediate basalt which has a consistent
partition coefficients across the HREEs (Figure 3a).

The clinopyroxene-melt partition coefficients for other
trace elements (large ion lithophile elements, LILE, high
field strength elements, HFSE, transition metals, and U and
Th) are presented in the Supplementary Material, Figure
S3. The HFSE partition coefficients mimic the trends
exhibited by the REEs in pyroxenes with more aluminous
compositions (intermediate basalt for 1 GPa and 50-50
mix for 2 GPa) having higher partition coefficients than
the Al-poor ferrobasalt. U and Th show similar sensitivity
to composition, both being measurable in the aluminous
intermediate basalt, and both below detection limit in the
Al-free 1 GPa ferrobasalt. The 1 and 2 GPa 50-50 mix and
2 GPa ferrobasalt contain measurable amounts of Th only
(Figure S3).

Garnet partition coefficients for REEs are similar to what
has been observed in previous studies (Figure 3c). The
partition coefficients are low for LREEs and >1 for HREEs.
Among LILEs, HFSEs, transition metals, and U and Th,
all experimental garnet partition coefficients nearly overlap
among experiments (Figure S4).
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Figure 3. REE partition coefficients for 1 and 2 GPa pyroxene rims calculated using Equation 1 for (a) experiments and
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et al., 2022), and (b-d) experimental garnet partition coefficients and partition coefficients from literature in gray (Johnson,
1998; Salters and Longhi, 1999; Klemme et al., 2002; Salters et al., 2002; Bennett et al., 2004; Pertermann et al., 2004;

van Westrenen et al., 1999, 2000).

4 Discussion

4.1 Partition Coefficient Variation with lonic Radius

The lattice strain model enables prediction of a partition
coefficient for a cation of a given size and charge substituting
into a specific lattice site if the properties of the site are
known (e.g., Blundy and Wood, 2003). The lattice strain
model is defined by the Brice equation (Brice, 1975):

D,' = DOX

—4TEN (2) (0 — r)* — (%) (ro— 1)
RT

(2)

exp

where Dy is the ideal Nernst partition coefficient for strain
free substitution into the lattice site (Eq. 1), E is the effec-
tive Young's modulus of the site, Na is Avogadro's number,
ri is the cation radius, ry is the crystal site radius, R is the
gas constant, and T is the temperature in K. The lattice

strain model is used to define parabola(s) for partitioning of
isovalent cations into a specific site as a function of their
ionic radii. This model has been instrumental in interpreting
controls on trace element partitioning behavior.

The elements in this study were grouped by valence state
and probable substitution sites, M1 or M2 in clinopyroxene
and X in garnet, according to their ionic radii (Shannon,
1976) and their observed partitioning behavior. Nonlinear
regressions were used to calculate Dy, E, rp for the lattice
strain equation (Eq. 2) from each experimental data set
with enough observations (three or more elements). For
clinopyroxenes, lattice strain parameters are reported in
Table 4 and the model fits are plotted with the experimental
determinations in Figure 4. The fit quality was tested by
comparing the modeled partition coefficients to the mea-
sured partition coefficients (Figure S6). Model predictions
for Ba fall off parabolas defined by other divalent elements in
pyroxenes; however, Ba concentrations are near LA-ICP-MS
detection limit (~0.01 ppm) and the partition coefficients
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Table 4. Continued.

Garnet

Intermediate  Uncertainty Intermediate Uncertainty  Intermediate  Uncertainty

Basalt 2 GPa Basalt 2.5 GPa Basalt 5 GPa
Li 0.144 0.024 0.191 0.046
Sc 0.975 0.045 1.036 0.058 1.512 0.087
Ba 0.0012 0.0009
V 7.19 0.65 18.12 7.335 7.113 0.555
Zn 0.258 0.025 0.171 0.04 0.166 0.037
Sr 0.0013 0.0001 0.0019 0.0008 0.0022 0.0002
Y 2.445 0.093 1.474 0.114 4.224 0.54
Zr 0.104 0.013 0.045 0.005 0.194 0.031
Nb 0.0017 0.0003 0.0018 0.0008 0.0028 0.0006
Mo 6.557 6.683 0.589 0.614
La 0.0012 0.00015 0.0016 0.0009 0.0027 0.0007
Ce 0.0055 0.0005 0.0038 0.0008 0.011 0.002
Pr 0.017 0.001 0.009 0.001 0.03 0.005
Nd 0.047 0.004 0.022 0.003 0.071 0.012
Sm 0.209 0.015 0.096 0.014 0.282 0.031
Eu 0.194 0.015 0.102 0.019 0.296 0.053
Gd 0.621 0.033 0.287 0.038 0.787 0.114
Tb 1.06 0.044 0.534 0.063 1.367 0.188
Dy 1.667 0.07 0.884 0.075 2.369 0.317
Ho 2.397 0.085 1.411 0.088 3.945 0.485
Er 3.203 0.173 2.129 0.16 5.941 0.607
Tm 3.968 0.262 2.972 0.261 8.587 0.849
Yb 4.826 0.281 3.923 0.495 11.231 1.489
Lu 5.609 0.525 5.135 0.807 15.236 2.373
Hf 0.18 0.025 0.056 0.008 0.206 0.034
Ta 0.0032 0.0007 0.0028 0.001 0.0049 0.0013
W 0.038 0.002 0.0046 0.0028 0.0011 0.0004
Th 0.001 0.0001 0.0017 0.001 0.0043 0.001
U 0.007 0.0007 0.0037 0.0012 0.015 0.002

exhibit considerable uncertainty (Figures 5 and S6). Lu and
Yb are assumed to substitute onto the M1 site in 6-fold
coordination for the ferrobasalt and 50-50 mix, and in 8-fold
coordination for M2 in the intermediate basalt.

The lattice strain model fits from this work were com-
pared to results from the published lattice strain parabola
inversion code, DOUBLE FIT (Dalou et al., 2018), which
parameterizes pyroxene M1 and M2 parabolas for 2+, 3+
and 4+ elements based on partition coefficients and cation
radii provided by the user. It was developed for cases where
elements substitute into multiple lattice sites as the HREEs
do in some of the experiments in this work. This program
can be run without parameter constraints, but the user
may manually limit parameters to a specific range to get
a better fit to their data. Without any intervention, the
program produced parameters for the M2 site to a close
approximation to our models (Figure S5). However, a direct
comparison could not be made for the M1 site due to an
elemental limitation in the DOUBLE FIT model, such that
the recovered lattice strain parabola terms and fit quality
were inconsistent (see caption to Figure S5 for details).

Garnet X-site parabolas were determined using the same
nonlinear regression method as for the pyroxenes; reported
values for Dy, E, ry and are presented in Table 5. The
garnet X-site is assumed to have 8-fold (dodecahedral)
coordination. The model fits (Figure 5d-e) show that LREE

(primarily La) deviate from the parabolas defined by heavier
REEs, presumably owing to larger analytical error produced
by their low concentrations in the garnets (<0.01 ppm),
otherwise the elements vary parabolically with ionic radius.

4.2 Origins of Partition Coefficient Variations in Fe-rich
Clinopyroxene

4.2.1 Charge Balancing Coupled Substitutions

The experiments show that there is a positive correlation
between pyroxene Al content and partition coefficients for
trivalent and tetravalent elements substituting onto sites
normally occupied by divalent elements (Figure 4). This
suggests the importance of tetrahedral substitution of Al
to balance excess charge on the pyroxene M sites, i.e.,
Si*t + Ca®" < APT 4+ REE®*, as in magnesian systems
(e.g., Gaetani and Grove, 1995; Lundstrom et al., 1998;
Schwandt and McKay, 1998; Shearer et al., 2006). However,
the Al-depleted ferrobasalt, and to a lesser extent the 50-50
mix experiments, exhibit some additional unique features
including a positive Eu partitioning anomaly and relative
enrichment of HREEs (Figure 3a).

4.2.2 Eu Partitioning Anomalies

The differing Eu partitioning anomalies among the samples
are likely a direct result of the Al content. Since Eu is
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Table 5. Pyroxene (M1 and M2) and garnet (X) lattice strain model parameters and uncertainty for 1 and 2 GPa
experiments. Model parameter uncertainty cannot be determined with fewer than four elements in the inversions, which

affects monovalent and tetravalent elements.

Intermediate lo Intermediate 1o 50-50 Mix lo 50-50 Mix lo Ferrobasalt lo
Basalt Basalt
(1 GPa) (2 GPa) (1 GPa) (2 GPa) (1 GPa)
M2 (1+)
Do 0.37 0.23 0.79 0.27
ro (A) 0.75 0.85 1.05 0.17
E (GPa) 38.46 34.63 31.35 13.28
M2 (2+)
Do 1.9 0.2 1.89 0.0001 1.89 0.002 2.09 0.004
ro (A) 0.96 0.05 0.95 0.0001 0.96 0.0001 0.95 0.002
E (GPa) 192 92 180 0.03 163 0.41 188 0.92
M1 (3+)
Do 3.99 0.11 2.74 0.034 2.3 0.032
ro (A) 0.58 0.007 0.63 0.01 0.65 0.002
E (GPa) 247 11.58 271 23.35 402 16.8
M2 (3+)
Do 0.16 0.15 0.07 0.001 0.12 0.001 0.03 0.001
ro (A) 1 001 1.02  0.004 1.01  0.004 1.01  0.008
E (GPa) 193 93 233 19.32 215 15.95 186 26.92
M1 (4+)
Do 0.63 1.03 0.13
ro (A) 0.65 0.65 0.63
E (GPa) 2530 4080 2414
X (3+)
Do 8.5 1.39
ro (A) 0.92 0.01
E (GPa) 515.6 89.23
Table 5. Continued.
Ferrobasalt lo Intermediate lo  Intermediate lo
Basalt Basalt
(2 GPa) (2.5 GPa) (5 GPa)
M2 (1+)
Do 0.29
ro (A) 0.99
E (GPa) 46.45
M2 (2+)
Do 1.96 0.0004
ro (A) 0.96 0.0001
E (GPa) 170 0.09
M1 (3+)
Do 2.41 0.014
ro (A) 0.67  0.002
E (GPa) 318 11.08
M2 (3+)
Do 0.09 0.003
ro (A) 1.01 0.01
E (GPa) 180 37.33
X (3+)
Do 128.6 100 1061.30 106.48
ro (A) 0.76 0.12 0.72 0.09
E (GPa) 283.2 108.52 287.2 100
Mouser and Dygert (2025) Adv. Geochem. Cosmochem. 1(2): 719, https://doi.org/10.33063/agc.v1i2.719 10
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Figure 4. Lattice strain model fits to the pyroxene-melt partitioning data for 1+, 2+, 3+, and 4+ cations, and partition
coefficients for 2+ and 4+ cations that do not exhibit parabolic behavior.

predominately divalent under these fO, conditions (~IW-1;
Schreiber et al., 1987), the partitioning of the 2+ cations
should be similar amongst the three compositions since they
do not require a coupled substitution to charge balance the
substitution. Indeed the Eu partition coefficients among the
1 GPa samples differ, 0.048 for the ferrobasalt, 0.076 for the
50-50 mix, and 0.10 for the intermediate basalt (Figure 3a).
The difference among the samples that makes the Eu
partitioning anomaly notable is the varying partitioning of
the trivalent REEs adjacent to Eu on a spider diagram (Sm
and Gd), where Sm and Gd are being directly affected by
the presence (or lack thereof) of tetrahedral Al to charge
balance their substitution into the structure (Figure 3a).

To determine the degree of the anomaly, the measured
Eu partition coefficient (Dg,) can be compared to the
logarithmic interpolation of the Eu partition coefficient

(DEU*):

Dey =/ Dsm x Dgg (3)

where Ds,, and Dgy are the measured partition coeffi-
cients for neighboring elements Sm and Gd. The values
of Dg,/Dgy« are plotted in Figure 6 against Alt for each
experimental pyroxene. A Dg,/Dg .value of one indicates

no anomaly, a value greater than one is a positive anomaly
and a value less than one is a negative anomaly.

The Eu anomalies vary between the 1 and 2 GPa series,
where the 1 GPa series shows a systematic inverse correla-
tion of the anomaly with the Al+ composition (Figure 6).
In the 2 GPa experiments, the Eu anomaly is effectively
absent (Figures 3a and 6). The 2 GPa experiments have
increased Al+ content relative to their 1 GPa counterparts,
consistent with previous experimental work (e.g., Thomp-
son, 1974). Pressure, temperature and composition all
contribute to determine the partitioning behavior of REE3*
in the clinopyroxene structure, apparently eliminating the
positive Eu anomaly in the 2 GPa series.

4.2.3 HREE Partitioning Anomalies

The anomalous increase of HREE partition coefficients
in the ferrobasalt (and 50-50 mix) pyroxenes may occur
because of their high Fe contents (e.g., Figure 3a). The
1 GPa ferrobasalt has the lowest Mg#, approximately 9,
thus the abundance of larger Fe?" is greater than the slightly
smaller Mg?* cation (0.78 and 0.72 A respectively in sixfold
coordination, Shannon, 1976). Previous studies have argued
that high concentrations of Fe and Mn in clinopyroxenes
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may lead to HREE partitioning in 6-fold coordination onto
the M1 site (Olin and Wolff, 2010; Dygert et al., 2014,
also see Rutstein and Yund, 1969 for information on lattice
dimension changes with increasing Fe). To charge balance
the clinopyroxene structure with a 3+ cation in the M1 site
and no tetrahedral Al present, additional coupled substitu-
tions must occur. One such mechanism is the partitioning
of a monovalent cation (M, e.g., KT, Na™) into the M2
site (Harlow, 1997):

(Fe,Mg)?" + Ca®" <+ HREE®" + M™. (4)
Both the ferrobasalt and the 50-50 mix pyroxenes exhibit
elevated Na™ and K™ partition coefficients relative to the
1 GPa intermediate basalt (Figure 6a), in perhaps facilitating
this type of coupled substitution.

4.2.4  Physical Controls on Partitioning Behavior

In Figure 7, lattice strain model parameter Dy (strain free
partition coefficient) for M2 2+, M2 3+, and M1 3+ from
this work and from previous studies are plotted against
temperature (in °C), Aly, and and NBO/T which is the
ratio of non-bridging oxygen to the number of tetrahedra in
a silicate melt (a measure of the average number of oxygen
shared between tetrahedral complexes). Additional lattice
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Figure 7. Pyroxene lattice strain model strain free partition coefficient (Do) from this work and the literature (Pertermann
and Hirschmann, 2002; Dygert et al., 2014, 2015) compared to (a-c) AIT, (d-f) T (°C), and (g-i) NBO/T. More figures
are included in the Supplementary Material that show the correlation of E, Dg, and ry to Aly, T, X,’_Vel, and NBO/T

(Figures S7-10).

strain model parameter relationships (Dg, ro, E) compared
to temperature, AIT, XM, and NBO/T can be found in
the Supplementary Material (Figures S7-10).

Comparison of Dy with T, NBO/T and Aly reveals
correlations of all three terms with Dy, suggesting the terms
are interrelated to a certain extent. For all lattice sites, the
modeled values from this work and literature show a general

trend of increasing Dg with increasing Al (Figure 7a-c).

An inverse correlation is also apparent with NBO/T, where
the lower NBO/T (more silicic compositions) correlate with
higher Do (Figure 7 g-i). The correlation with this index
of polymerization is even more dramatic with the inclusion

of data from highly silicic systems (Olin and Wolff, 2010).

In most cases, lower Dg values are associated with higher

temperatures (Figure 7d-e), but for the M2 3+ site, Dg
increases with increasing temperature. The relationship of
XMlon the lattice parameters are consistent within the data
from this work (Figure S7), where higher Dy is correlated
to an increase in XM! between the 1 and 2 GPa series in
the 50-50 mix and ferrobasalt compositions, which is also
correlated with an increase in Aly between the samples at
increasing pressure.

It makes sense that among experiments, NBO/T is cor-
related with T, as the degree of polymerization of a melt is
related to liquidus temperature. Consequently, T or NBO/T
is correlated with Dg, the other may be as well. Similarly, Al
substitution into pyroxenes must be temperature dependent
to some extent, such that a systematic correlation of T or
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Al with Do may necessarily produce a systematic correlation
with the other parameter. These covariations make it
difficult to disentangle which parameters physically control
partitioning behavior. Melt structure clearly has an effect on
partition coefficients in highly silicic systems (Olin and Wolff,
2010), but meta-analysis of trace element partitioning data
in basaltic systems suggests that T and crystal chemistry,
specifically Al partitioning on the tetrahedral site, are more
important in depolymerized basaltic systems (Sun and Liang,
2012). Based on the aforementioned crystal chemical
arguments and our experimental observations (Figures 6
and 7), we concur with Sun and Liang (2012) and previous
experimental studies from magnesian systems (Colson et al.,
1989; Gallahan and Nielsen, 1992; Hauri et al., 1994; Gae-
tani and Grove, 1995), and suggest that in Fe-rich basaltic
systems, in temperature, tetrahedral Al substitution plays
a dominant role in controlling the partitioning behavior of
highly charged cations in pyroxenes.

4.3 Fe- and Al-based Predictive Model for the M1 Lattice
Site

Pyroxene compositions most similar to this work are from
Dygert et al. (2014). In that study, the authors param-
eterized Fe- and Al-based predictive lattice strain models
(Dygert et al., 2014, 2015) that can be used to calculate
REE partition coefficients between silicate melt and the
clinopyroxene M2 site as a function of temperature and
composition. The published Fe- and Al-based models suc-
cessfully recover the more aluminous intermediate basalt
pyroxene from this study (Figure S11). However, as py-
roxene composition becomes more Fe-rich and Al-depleted,
the existing models overestimate the partition coefficients.
Additionally, the models are incapable of recovering partition
coefficients of HREEs and other trivalent elements on the
M1 site. Thus, we focus here on parameterization of a
predictive model for HREE and other trivalent element
substitutions onto the M1 site.

Using the newly determined M1 3+ cation partition coeffi-
cients (Sc, Lu, Yb, and V; the latter is predominately 3+ at
IW-1; Papike et al., 2016), from the 1 and 2 GPa ferrobasalt
and 50-50 mix experiments, two experiments from Dygert
et al. (2014, HB5 and HB7), a composition and temperature
dependent predictive model was parameterized. The Dy
term (Eq. 2) is calculated as a function of crystal-chemical
and temperature effects:

a
DOZ—31+R73,_+33><X£/;1+24XX~AF/ (5)

where XM is the Fe component in the M1 lattice site and
X}, is the tetrahedral Al component. The terms ay, a, as,
and a4 are parameterized by nonlinear regression utilizing
partition coefficients, temperature, and XM! and X}, ex-
perimental data as dependent and independent variables,
respectively. E and ry (Eq. 2) are simultaneously inverted
along with a;-ay.

10'E T T T ITTT] T T T T T TTT

H == 50-50 Mix A A ]
H + Ferrobasalt o /. 4
1 O 1GPa ° ‘w7
1 O 2GPa e 7

= | A HB7 @ , i

) V HB5 s i‘ £

3] 0 , s

= — s/ 7/ —

g 10k / / i

S) u s s ]
- 7 / |

5 o A s v i

i= L NN s i

= - - s

cr &, 1

e o\ ol

Qo [=]ke

S0 7 J(/T =

S E s E

o C v / ]

o o s 4 i
- s - i
L/ 7 |
s s
b s i

s
10—2 ¥ 1 1 II\\Il 1 1 1 |I\II| 1 1 |
102 107 10° 10"

Measured Partition Coefficient

Figure 8. Fe-, Al-, and T-based model predictions for
3+ cations the M1 lattice site (Yb, Lu, Sc, V) versus
the measured partition coefficients from the 1 and 2 GPa
ferrobasalt and 50-50 mix experiments, and HB5 and HB7
from Dygert et al. (2014).

The resulting expressions for E, ry, and Dy are:
2.76(40.01) x 10°

RT (6)
+10.64(£0.12) x XQ/Q +25.42(4+0.01) x XZ,

Do = —8.54(+0.17) +

E = 263.86(+£127.29) (7)

ro = 0.62(+0.01) (8)

Uncertainty for each parameter is in parentheses (20).
The fit quality was tested by comparing the predicted and
measured partition coefficients from each experiment (Fig-
ure 8). The model recovers the experimental determinations
and previously published data (HB5 and HB7, Dygert et al.,
2014) to close approximation for Sc and V whereas predicted
Yb and Lu partition coefficients have larger uncertainties
and diverge farther from the measurements. Nonetheless,
all the predictions are within uncertainty of the measured
values or differ from the measurements by less than a factor
of two. Parameterization of future models will benefit from
further experimental characterization of HREE partitioning
in the 6-fold coordinated M1 site in Fe-rich systems.

4.4 Prediction of Garnet Partition Coefficients

Published garnet-melt partitioning studies focus mainly on
Mg-rich garnets (e.g., Johnson, 1998; Salters and Longhi,
1999; van Westrenen et al., 1999, 2000; Klemme et al.,
2002; Salters et al., 2002; Bennett et al., 2004; Pertermann
et al., 2004). An existing predictive garnet-melt partitioning
model (Sun and Liang, 2013) calibrated using the magnesian
partitioning data recovers measured partition coefficients
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Figure 9. Measured REE partition coefficients for the

intermediate basalt garnet and model predicted partition
coefficients using the garnet-melt partitioning model from
Sun and Liang (2013).

when extrapolated to the 5 GPa experiment. However,
for the lower pressure, more Fe-rich garnets, the model
overestimates the HREE partition coefficients (Figure 9),
presumably owing to a lack of Fe-rich garnet data in the
model calibration dataset. More partitioning data from
Fe-rich systems are needed to calibrate improved next-
generation predictive garnet-melt partitioning models.

4.5 Application to the Petrogenesis of Lunar Basalts

To explore the potential influences of incompatible element
rich pyroxenes and garnets in the lunar mantle on the com-
positions of lunar basalts, a modal batch melting model of
a garnet-free and garnet-bearing (1-5%) pyroxenite formed
after lunar magma ocean solidification was explored using
the new experimentally determined partition coefficients
for clinopyroxene and garnet, and reported orthopyroxene
and olivine partition coefficients from literature (Dygert
et al., 2020). The initial lunar mantle source composition
was modeled after the Snyder et al. (1992) solidification
sequence assuming a chondritic bulk Moon (Dygert et al.,
2014). The mantle source considered here (in trace element
compositions representing lherzolite-websterite layers from
Snyder et al., 1992) included olivine, orthopyroxene, and
clinopyroxene, with variable but minor amounts of garnet
assumed (0-5 wt%).

The melting model results are presented in Figure 10. The
Figure shows regions where different lunar basalt groups and
black glasses plot relative to their Ce/Sm and Yb/Sm ratios.
The ratios are useful in interpreting the relative proportions
of HREE (Yb) to mid-light REE (Sm and Ce, respectively)
and thereby the mineral components in the source. The
use of ratios makes the results independent of the con-
centrations assumed in the initial bulk Moon. Increasing

2.5
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ol b

KREEP Basalts
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A
Black Gla?s

05—
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Figure 10. Batch melting models (0-30% melting) of an
enriched pyroxenite source with variable amount of garnet
(0-5%). Lunar basalt data were sourced from the lunar
sample compendium (Meyer, 2005). Black glass data are
from Shearer et al. (1990). Trace element abundances used
to calculate the ratios are chondrite normalized (Anders
and Grevesse, 1989).

the garnet component results in preferential retention of
HREEs during melting owing to the compatibility of HREEs
in garnet, which produces lower Yb/Sm in the coexisting
liquid (Figure 10). As the garnet proportion increases at any
extent of melt, Ce/Sm decreases, demonstrating the greater
incompatibility of Ce than Sm in garnet-bearing sources.
According to chemical fractionations predicted by these
models, some basalt groups (olivine-type, pigeonite-type,
ungrouped) could have derived from sources containing
garnet. Among the samples investigated here, those most
consistent with a garnet-bearing source are black glasses,
which fall close to the 5% garnet source melting, with the
best fits to the data at higher extents of partial melting
(Figure 10).

5 Conclusions

Fe-rich basaltic magmas are products of late-stage, or
more evolved mafic systems and are common on terrestrial
bodies across the Solar System, such as Mars, the Moon,
and meteorite parent bodies. Trace element partitioning
behavior in mafic systems is important for understanding
petrogenetic processes. This work experimentally studied
trace element partitioning behavior in clinopyroxenes in
ferrobasaltic systems with variable Fe and Al contents, and
in Fe-rich garnets, to explore how trace element partitioning
differs in Fe-rich systems from magnesian systems.
Clinopyroxenes in the most aluminous experiments had
the highest trivalent and tetravalent element partition co-
efficients and exhibited neutral or positive Eu anomalies.
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Clinopyroxene in an Al-depleted, Fe-rich experiment had the
lowest trivalent and tetravalent partition coefficients and
exhibited a positive Eu partitioning anomaly. Collectively,
the experiments reveal that much like in Mg-rich systems, Al
substitution controls the partitioning of 3+ cations into the
M2 site of the clinopyroxene structure via coupled substitu-
tion with tetrahedral Al, e.g., Ca?T+Si*t «+ REE3T+APT.
The change of Eu anomaly sign with Al content reflects
depletion or enrichment of REE3* cations according to
the Al abundance. Clinopyroxenes in Fe-rich experiments
exhibit anomalously higher heavy REE partition coefficients
than in the more Fe-poor experiments. We interpret this
as reflecting HREE partitioning onto the M1 site in 6-fold
coordination, as HREEs in 6-fold coordination have ionic
radii similar to Fe>*. The lattice strain model was applied to
the experimentally determined partition coefficients. Using
the 3+ M1 lattice site partition coefficients, a new model
was parameterized to predict the partitioning behavior of
HREE3" and other trivalent elements on the M1 lattice site
at different temperature conditions and as a function of
clinopyroxene Al and Fe content.

In addition to clinopyroxene, experiments conducted at
higher pressures (>2 GPa) produced Fe-rich garnet, provid-
ing an opportunity to constrain garnet-melt trace element
partitioning in lunar-relevant systems that have not been
investigated previously. Extrapolation of an existing tem-
perature and composition-dependent predictive partitioning
model (Sun and Liang, 2013) to these garnets is moderately
successful. As an application of the new partitioning data,
petrogenetic models investigated the formation of lunar
basalts, testing the potential role of garnet in hybridized
mantle sources. Partial melting of garnet-bearing sources
is consistent with some lunar basalt groups, especially the
black glasses, which could have derived from a source with
up to 5% garnet in the Moon's deep interior.
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