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Partial melting at destructive plate margins is usually linked to fluid addition from the
subducting plate, but decompression melting and asymmetric “wet” and “dry” wings of the
melting zone at back-arc spreading centres have also been invoked. Distinguishing between
these models has proved difficult using conventional geochemical data. Here, we combine
230U– 238Th disequilibria, H2O contents and Ba/Nb ratios on glasses to identify fluid-fluxed
versus decompression melting across the Tonga Arc – Lau back-arc. From the arc front
into the back-arc, (230U/238Th) disequilibria range from 0.55 to 1.14, H2O contents from 2
to 0.25 wt% and Ba/Nb ratios from 1000 to 5. The (230U/238Th) disequilibria and ratios
of fluid mobile to immobile trace elements are amongst the most extreme reported from
arcs and change to values typical of mid-ocean ridges. Our data provide evidence for
the co-existence of both fluid-fluxed and decompression melting regimes and suggest that
back-arcs situated close to the arc may be able to draw subduction-related material into
the spreading axis. The systematic compositional change with increasing distance between
arc and back-arc does not reflect changes in dehydration reaction in the subducting slab,
but different proportions of slab material contributing to the back-arc spreading regime.
A stepwise change at > 100 km distance between arc and back-arc marks the separation
between fluid-fluxed and decompression melting domains occurring over relatively short
spatial distances. These are also associated with a transitional change in ridge morphology
due to the appearance of an axial magma chamber at the southern East Lau Spreading
Centre.

1 Introduction

Subduction, partial melting, and crustal recycling at de-
structive plate margins are important geodynamic processes
affecting the evolution of the Earth (e.g. Davies, 1999). As
reviewed by Tatsumi and Eggins (1995), magma generation
in the mantle wedge beneath arc volcanoes is usually inferred
to be linked to fluid addition from the subducting plate.
Decompression melting in the upwelling parts of the mantle

wedge and mélange diapirs have also been invoked beneath
the arc front, whereas asymmetric “wet” and “dry” areas may
exist in the back-arc melting region (Bourdon et al., 1999;
Conder et al., 2002; Langmuir et al., 2006; Marschall and
Schumacher, 2012; Turner et al., 2004, 2006). Geochemical
data have been generally successful in tracing the different
components which contribute to the compositional range in
the erupted lavas (Pearce and Parkinson, 1993; Pearce and
Peate, 1995; Tatsumi and Eggins, 1995). The geochemical
variability observed along and across island arcs has com-
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monly been associated with changes in the residual source
composition of the underlying mantle wedge combined with
changes in fluids or melts originating from the metamorphic
dehydration reactions in the subducting slab (Bebout, 2007;
Timm et al., 2016; Tollstrup et al., 2010; Woodhead et al.,
1998). These dehydration reactions are largely due to the
destabilisation of pargasite and phlogopite at ∼ 3.5 GPa and
∼ 6.5 GPa (Spandler and Pirard, 2013), respectively.

Back-arc spreading centres that are situated angular to
their adjacent island arc typically encompass a range of
slab depths and provide a unique means to assess the
compositional and melting changes as a function of distance
to the active arc, and above the subducting slab. The
enrichment from slab components may be the direct result of
dehydration reactions in the subducting slab. Alternatively,
they could be caused by slab rollback in which an island
arc progressively moves away from the back-arc, sampling
pre-depleted mantle re-enriched by slab fluids (Pearce et al.,
1994), or they could be the result of melt mixing in over-
lapping melting zones (Zhao et al., 1997). In these cases,
the variability of geochemical signatures along the back-arc
do not directly reflect the dehydration reactions from the
subducting slab. The interaction, or lack thereof, of the
melting regions underneath the arc and back-arc remain
disputed (Cooper et al., 2022; Escrig et al., 2012; Langmuir
et al., 2006; Pearce et al., 2005; Taylor and Martinez, 2003).

However, identifying the mantle melting regime is chal-
lenging. Uranium-series isotope disequilibria have proved
critical in this respect, being sensitive to melting rates.
Additionally, U-series disequilibria in fluid-fluxed and decom-
pression melting typically have a diametrically opposite sense
(coupled 238U and 226Ra excesses versus 230Th and 231Pa
excesses, respectively (Bourdon et al., 2003b)). Combined
with volatile contents, U-series isotopes provide a unique
means to distinguish between decompression and fluid-fluxed
melting (Lundstrom, 2003; Turner et al., 2003). Few studies
to date used U-series isotopes to systematically investigate
the distribution and styles of melting in back-arcs with
increasing distance from the arc (Beier et al., 2010; Caulfield
et al., 2012; Fretzdorff et al., 2003; Peate et al., 2001).

The Valu Fa Ridge (VFR), Eastern Lau (ELSC), and
Central Lau spreading centres (CLSC) in the western Pacific
are situated at an increasing distance from the active Tonga
island arc from south to north (Arai and Dunn, 2014; Bevis
et al., 1995; Stewart et al., 2022; Taylor et al., 1996;
Zellmer and Taylor, 2001) (Fig. 1). The southern VFR
(SVFR) is less than 30–50 km distant from the active arc
front (Sleeper and Martinez, 2014) and distances exceed
150 km at the northern termination of the CLSC (Escrig
et al., 2009). Underneath the back-arc, the depth of the
subducting slab increases northward from ∼ 120–140 km
underneath the VFR to > 250 km at the northern end of
the CLSC (Fig. 1) (Hayes et al., 2012) making this region
ideally suited to determine large scale compositional and
melting changes along the VFR and CLSC. Seismic data
and numerical models provide complementary insights into
melting processes by constraining the likely temperature
profile and convection patterns in the mantle wedge at a

resolution of kilometres to 10s of kilometres (Syracuse et al.,
2010).

Here, we present a unique combination of geochemical
and U-series data on the same samples along with published
seismic data to identify the relative roles of fluid-fluxed
versus decompression melting in the Tonga Arc – Lau back-
arc region. We can show that the systematic changes in
U-series and trace element signatures along the Lau back-
arc likely are the result of direct interaction of the melting
regimes, whereas a sudden change towards a dry, MORB-like
melting regime occurs at a distance of > 100 km between
the arc and the back-arc. The occurrence of slab-related
geochemical signatures along the Lau back-arc in the north
and at > 100 km distance between the arc and back-arc
spreading centre may best be explained by reactivation
(remelting and/or assimilation) of hydrous components
from ancient arc components due to slab rollback. We
conclude that the stepwise change in geochemical signatures
at ∼ 100 km distance between the arc and the back-arc
spreading centre reflects a separation of the fluid-flux and
decompression dominated melting regimes. Our model
indicates that the width of the melting zone underneath
the back-arc spreading centre likely extends ∼ 50–80 km to
either side of the spreading axis in line with geophysical
observations from mid-ocean ridges.

2 Background and setting

The intra-oceanic Tonga island arc in the southwest Pacific
and associated Lau back-arc basin (Fig. 1) has provided
much important information on the geodynamics and evolu-
tion of oceanic arc-back-arc systems outlined above. The
Tonga island arc was the locality where geophysical observa-
tions first identified plate subduction (Sykes, 1966). Here,
as in many other oceanic arcs, geochemical tracers such as
10Be and Ba/Nb have clearly identified contributions from
both sediment melts and fluids, respectively, transported by
the subducting Pacific plate (George et al., 2005; Turner
et al., 2006). Extreme U-series isotope disequilibria in
the arc front lavas have been used to determine fluid
addition, melt generation and magma ascent rates and
provided evidence for the effects of decompression melting
subsequent to fluid flux melting (Bourdon et al., 1999;
Turner et al., 2001; Turner and Hawkesworth, 1997; Turner
et al., 2006). Mapping of the spatial distribution of the Pb
isotope signature of the Louisville Ridge (Fig. 1a) was used
to identify decoupling between the subducting plate and
convection in the mantle wedge flow at depths shallower
than 80 km (Beier et al., 2017b; Regelous et al., 1997;
Turner and Hawkesworth, 1997). When combined with the
fast convergence rates and plate age structure, this has
led to the recognition that Tonga-Kermadec is the coldest
subduction system on Earth (Syracuse et al., 2010) hence
melting of the igneous subducting slab appears unlikely (Wei
et al., 2017). More recently, across-arc seismic profiles have
been used to image the location and eastward-directed influx
of hot upwelling mantle in the wedge (Wei et al., 2015).
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In a prior study, Caulfield et al. (2012) calculated slab
surface temperatures along the Fonualei Rift and Spreading
Centre (FRSC, Fig. 1) that extends from the Tonga Arc
into the Lau Basin and compared these, along with geo-
chemical data and U-series disequilibria, with experimental
data for slab dehydration and sediment melting. They found
evidence for both fluid-fluxed and decompression melting
but the dataset was too limited to determine whether the
melting regime underwent a progressive or stepwise change
with increasing slab surface temperatures as well as the
relative changes along the spreading axis – topics which
we address here. At the time, there was also less seismic
data for the temperature structure within the mantle wedge.
Here, we build upon the earlier geochemical and U-series
assessments by Peate et al. (2001) and Caulfield et al.
(2012) by combining them with the detailed seismic profiles
constructed by Wei et al. (2015) and new geochemical
data from across-arc traverses to develop an integrated
assessment of melting processes beneath this region.

The Lau Basin is a large V-shaped back-arc basin with
numerous individual spreading centres that extends behind
the Tonga island arc from ∼ 22.9° S to ∼ 15° S. The VFR,
ELSC, Intermediate Lau spreading centre (ILSC) and CLSC
are situated from 18° S and 22.9° S, respectively (Fig. 1)
(Davy and Collot, 2000; Hawkins and Melchior, 1985; Jenner
et al., 1987). The opening of the Lau Basin back-arc
spreading centres has been successively propagating in a
southward direction since 5.0–5.5 Ma (Fretzdorff et al.,
2006; Hawkins, 1995a,b). As a result, the VFR, and Lau
spreading centres are situated at an increasing distance to
the arc front from as close as ∼ 30 km at the southern tip
of the VFR at ∼ 22.9° S to as far as ∼ 110 km at 19.3° S,
exceeding 150 km as one approaches the CLSC in the north
(Fig. 1). The current phase of spreading started at 3–
4 Ma (Escrig et al., 2009) and rates of spreading vary from
almost 90 mm/a at ∼ 18° S to 65 mm/a at the southern
tip (Taylor et al., 1996) associated with changes in rate of
subduction from 160 mm/a in the north to 80 mm/a in the
south (Escrig et al., 2009; Taylor et al., 1996).

The water depth decreases from N to S from 3 000–2 700
to 2 200–1 800 metres below sea level at the VFR, respec-
tively (Escrig et al., 2009). The ELSC is split into several
first-order ridge segments in which each northern segment
is shifted west, relative to its southern counterpart (Escrig
et al., 2009; Sleeper and Martinez, 2014). At 20.6° S,
a distinct change in ridge geometry (Dunn and Martinez,
2011; Sleeper and Martinez, 2014) and geochemistry (Escrig
et al., 2009) has been observed. At this latitude the ridge
morphology changes from an axial depression and constant
water depths north of 20.6° S to a well-defined axial high
and southward decreasing depths associated with southward
increasing La/Sm, Th/La, and 206Pb/204Pb ratios. These
changes are coupled with a steep transition in slab depth
(Hayes et al., 2012) from 160 km to > 400 km in the north
(Fig. 1).

The VFR is about 160 km long and is located around
180 km west of the Tonga Trench (Fretzdorff and Haase,
2002; Massoth et al., 2007) (Fig. 1). The VFR has been

active for ∼ 0.7–0.9 Ma (Morton and Pohl, 1990) and the
spreading rate increases from 39 to 60 mm/a from S to N,
along with an increase in distance to the southern Tonga
Arc from 30 to 50 km (Zellmer and Taylor, 2001). The
VFR consists of three overlapping, left-(westward)stepping
spreading segments (Wiedicke and Collier, 1993) that are
termed Northern (N-), Central (C-) and Southern (S-) VFR
(von Stackelberg et al., 1990). A magma chamber under-
neath the ridge axis extends for at least 100 km along the
axis at a depth of ∼ 3 km and has a width of 2–3 km (Collier
and Sinha, 1990; Morton and Sleep, 1985), likely decreasing
in thickness towards the north (Fretzdorff et al., 2006).
Published data from the SVFR show that the erupted lavas
are basaltic to rhyolitic and display typical subduction zone
trace element signatures with increased fluid-mobile to -
immobile element ratios (e.g. Ba/Nb, Ba/La) and relatively
depleted high field strength elements (HFSEs) (Taylor and
Martinez, 2003) relative to normal MORB. The southern
tip of the VFR (profile E in Fretzdorff et al., 2006) was
sampled during R/V Sonne cruises 67 and 167 (Fretzdorff
et al., 2006; Haase et al., 2009) and sampling has been
performed along, as well as across the VFR (Fig. 1b and c).

3 Samples and analytical methods

3.1 Samples

For the purpose of this contribution, we combine new data
from whole rock (116) and glass (148) samples from R/V
Sonne expeditions SO35 (1984), SO67 (1990), SO167
(2002) (Stoffers et al., 2003), R/V Southern Surveyor
Tonga-Eastern Lau Vents (TELVE, SS02/2003, 2003) and
the R/V Nadir NAUTILAU expeditions (1989) (Haase et al.,
2009; The Nautilau Group, 1990). In addition, we present
new combined major element, trace element, H2O and
Pb for 39 samples, and U-Th (n = 12) and Ra isotope
data (n = 7), 6 of which come from a 27–47 km transect
orthogonal to the arc at the southern tip of the VFR situated
from 22.79° to 22.88° S and 176.88° to 176.69° W (Fig. 1c).

We integrate our new data with published data from the
ELSC and VFR (Bach et al., 1998; Boespflug et al., 1990;
Cooper et al., 2022; Escrig et al., 2009; Ewart et al., 1998;
Falloon et al., 1992; Frenzel et al., 1990; Fretzdorff et al.,
2006; Gill, 1976; Haase et al., 2009; Hawkins, 1976; Hawkins
and Melchior, 1985; Hilton et al., 1993; Jenner et al., 1987;
Karrei, 2008; Kent et al., 2002; Pearce et al., 1994; Peate
et al., 2001; Tian et al., 2008; Vallier et al., 1991) and
compare these to data from the FRSC (Caulfield et al.,
2012; Keller et al., 2008) and the Tonga Arc (Cooper et al.,
2022; Ewart et al., 1994, 1998; Ewart and Hawkesworth,
1987; Regelous et al., 1997; Turner and Hawkesworth,
1997).

3.2 Analytical methods

The majority of the whole rock and glass samples were
processed with the sample batches discussed in Haase et al.
(2002), Haase et al. (2006) and Fretzdorff et al. (2006)
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Figure 1. (Previous page) a) regional overview map; b) map
with sample locations showing major features and symbols
used in figures and the location of seismic profiles (yellow
dotted lines) from Wei et al. (2015). Fonualei Rift and
Spreading Centre (Fonualei RSC) data are from Caulfield
et al. (2012). Central Lau Spreading Centre (CLSC), East
Lau Spreading Centre (ELSC), Intermediate Lau Spreading
Centre (ILSC) and Valu Fa Ridge (VFR) are from in Escrig
et al. (2009) and are also shown in Stewart et al. (2022).
S-ELSC and N-ELSC as published in Escrig et al. (2009)
and separated at 20.6° S. Published data are compiled from
GEOROC (Bach et al., 1998; Boespflug et al., 1990; Cooper
et al., 2022; Escrig et al., 2009; Ewart et al., 1998; Falloon
et al., 1992; Frenzel et al., 1990; Fretzdorff et al., 2006;
Gill, 1976; Haase et al., 2009; Hawkins, 1976; Hawkins and
Melchior, 1985; Hilton et al., 1993; Jenner et al., 1987;
Karrei, 2008; Kent et al., 2002; Pearce et al., 1994; Pearce
and Peate, 1995; Peate et al., 2001; Tian et al., 2008;
Vallier et al., 1991) and references therein. Slab depth (thin
grey lines) from Hayes et al. (2012). Arc front is marked
by thicker, dotted grey line. Inset c) shows the southern
Valu Fa transect discussed in the main text.

using the same methodologies and reference materials (see
Beier et al., 2025).

Major elements of glasses were analysed at the Institut
für Geowissenschaften, Christian-Albrechts Universität zu
Kiel using methods described in Haase et al. (2006) and
Fretzdorff et al. (2006). Selected whole rock major ele-
ments were processed using methods described in Haase
et al. (2002) and Fretzdorff et al. (2006). Trace element
and Pb isotope analysis for whole rocks and glasses are
described in Haase et al. (2006) and Fretzdorff et al. (2006).
Major elements of TELVE glasses (Beier et al., 2025) were
analysed using the JEOL JXA-8200 electron microprobe at
the GeoZentrum Nordbayern, Erlangen. The instrument
was operated with a 10 µm, defocused beam, 15 nA beam
current and a 15 kV acceleration voltage calibrated against
natural glass standards (Beier et al., 2018). Precision and
accuracy relative to VG-A99 (NMNH 113498-1) were better
than 5 % (2σ) for all major elements (Beier et al., 2017a;
Brandl et al., 2012) during the analytical period. New trace
element concentrations on selected samples (Beier et al.,
2025) were analysed using laser ablation inductively coupled
plasma mass spectrometry (LA-ICP-MS) using an Agilent
7700 quadrupole ICP-MS coupled with a Photon Machines
Excite Analyte 193 nm excimer laser ablation system with
HelEx sample cell at Macquarie GeoAnalytical, Macquarie
University. A laser beam of 65 µm and a measurement
time of 120 s (30 s background, 60 s signal, 30 s washout)
was used to analyse the volcanic glasses. SRM NIST610
glass standards were analysed after every 5th sample to
correct the machine drift. The SRM NIST610 standard was
used for external calibration of relative element sensitivities
and 43Ca data for internal calibration. The accuracy is
better than 10 % for all elements (except for Li and Y
with < 13 %) and the reproducibility is better than 6 % for

all elements using the basaltic reference material BCR-
2G (n = 9). TELVE samples (TD) were analysed in the
Helsinki Geoscience Laboratories (HelLabs) using a GeoLas
Pro 193 nm ArF laser coupled with an Agilent 7900 ICP-
MS. The samples were ablated using 10 J/cm2, 90 µm spot
sizes and a measurement time of 120 s (40 s background,
50 s signal, 30 s washout). The samples were corrected
using SRM NIST610 using 28Si data for internal calibration.
The long-term accuracy of SRM NIST612 as unknown is
deviating less than 3 % from accepted GEOREM values,
with a reproducibility of < 4 % for all elements (n = 260).

The Pb isotopes were analysed with the same sample
set as those described in Haase et al. (2002) using the
same methods and reference materials. Uranium-series
were analysed on fresh, hand-picked, unaltered volcanic
glass samples, which were washed, leached and manually re-
inspected twice before the addition of spikes, dissolution and
column chemistry described in Beier et al. (2010) and Turner
et al. (2011). The samples were analysed at Macquarie
University, Sydney, Australia. The U and Th splits were
analysed on a Nu Instruments® MC-ICP-MS following the
method described in Dosseto et al. (2006) and McGee
et al. (2011). The accuracy was better than 3.8 %, as
determined by repeated analysis of the BCR-2 international
rock reference materials that was processed along with
the other samples throughout the analysis. Radium cuts
were analysed with a ThermoFinnigan Triton® TIMS after
being loaded onto degassed Re filaments with a Ta-HF-
H3PO4 solution to activate the Ra. The 228Ra/226Ra
ratios were analysed in dynamic ion counting mode. The
accuracy of BCR-2 standard analysis is 0.53 % for 226Ra
and 1.33 % for (226Ra/230Th) (Scott et al., 2019; Sims
et al., 2013). Water measurements were performed at
the Research School of Earth Sciences at the Australian
National University, Canberra, Australia on the SHRIMP-SI.
Handpicked glass chips were embedded in In-mounts coated
with Au and analysed for 16O– and 16O1H– described by
Turner et al. (2015). Internal basaltic glass standards (n = 6
each) ND61, ND70 and 24.1 were analysed between the
sample measurements to ensure reproducibility (< 1.53 % for
ND70 and 24.1, 8.54 % for ND61) and accuracy (< 0.79 %
for all samples). Water data were calculated by the sensi-
tivity factor given by the standard analyses and the sample
measurements.

4 Results

The critical results are shown on Figures 2 to 6 and the
full dataset is available in Beier et al. (2025). We present
our geochemical results with respect to their geographical
placing across the southernmost VFR (VFR transect), and
along the VFR, S-ELSC and N-ELSC, ILSC, and CLSC as
well as off-axis lavas (Fig. 1).

The VFR samples range from ∼ 50 to > 75 wt% SiO2

(Fig. 2; < 55 km distance to arc) and follow a broad trend
with decreasing Al2O3, MgO, CaO, CaO/Al2O3, and in-
creasing TiO2, Na2O, and K2O contents. Most major
elements display a change in slope at ∼ 55 wt% SiO2 im-
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Figure 2. a) Total alkalis versus SiO2 diagram classification after Le Maitre (1989), b) CaO/Al2O3 and c) H2O versus
SiO2, and d) water depth (meters below sea level, mbsl) versus H2O. H2O degassing paths calculated for SO67 228KD-02
(high H2O) and DAR0033-041-002-001 (low H2O) (Kent et al., 2002) at ∼ 50 wt% SiO2 using Sulfux_X (Ding et al.,
2023) and calculated from Newman and Lowenstern (2002). Published data as in Figure 1 and Fonualei (FRSC) data are
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plying changes in the fractionation assemblage. The VFR
transect samples have a SiO2 range of 50.9 to 59.5 wt%
and are subalkaline basalts to andesites. Fractionation
indices (SiO2, MgO) display the largest variability in the
VFR and southern ELSC samples. With increasing distance
to the arc, samples are becoming less evolved and are mostly
mafic in composition (Fig. 3a). We did not observe a clear
correlation of Cl/K2O with either MgO or SiO2 but note
that there is a positive correlation of Cl/TiO2 with SiO2

and that some high SiO2 (> 65 wt%) samples are displaced
towards lower Cl/TiO2 and Cl/K2O.

The dataset reveals several striking trends over ∼ 140 km
from the Tonga arc front into the Lau back-arc (Fig. 3).
Barium to Nb ratios (Ba/Nb), taken as a proxy for slab fluid
input shows a broadly curvilinear decrease from strongly
elevated ratios (> 500) to values akin to those observed
in MORB (∼ 5.4 ± 2.1) with increasing distance from the
arc front (Fig. 3b). Trace element ratios sensitive to fluid
addition (e.g. Ba/Nb) are correlated with those sensitive
to degree of mantle wedge depletion (e.g. Th/Yb, Nb/La,
Fig. 4). Lavas from the SVFR display the highest Ba/Nb and

lowest Ce/Pb ratios and cover a large range in (Ce/Yb)N.
Samples from the northern ELSC are closer to MORB
compositions (Fig. 3 and 4) compared to the VFR. Changes
in slab fluid proxies are accompanied by a broad change in
glass H2O contents that decrease from ∼ 2 to 0.25 wt%,
but the variable H2O contents in the arc front lavas reflect
degassing and primary arc front magmas probably contain 3–
5 wt% H2O (Fig. 3d) (Cooper et al., 2022). In Pb isotope
space (Fig. 5), the northern ELSC samples overlap with
published data inferred for ‘Indian’ type MORB mantle,
whereas the VFR and more southern ELSC samples have
higher 206Pb/204Pb and 208Pb/204Pb ratios accompanied
with elevated Ba/Nb ratios (Peate et al., 2001).

The short-lived U-Th-Ra isotope disequilibria from the
VFR transect display excess of 238U over 230Th (Fig. 6). Our
samples preserve (226Ra/230Th) disequilibria (parentheses
denote activities), implying fractionation within the last
8 ka and, therefore, no age correction is required for the
Th isotope data (Fig. 6). We do not observe any correlation
of (230Th/238U) with (234U/238U) (ranging from 0.98 to
1.01) indicating that seawater alteration has not significantly
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Figure 3. Plots of key geochemical parameters versus distance from arc front in km. a) SiO2, b) Ba/Nb, c) Nb/La, d)
H2O, e) 206Pb/204Pb and f) (230Th/238U) disequilibria (brackets denote activity ratios). Violin plots in a) to c) for clarity.
Published data as in Figure 1 and 2. Tofua island data for H2O are from Cooper et al. (2022). Grey horizontal fields
mark MORB array (Jenner and O’Neill, 2012; Lundstrom, 2003), grey vertical bars mark transition zone between melting
regimes as described in the main text.

affected the U-series isotope disequilibria (Chen et al.,
1986) of our samples. Higher Cl/K2O in few samples from
the whole dataset could however indicate assimilation of
seawater altered material (Kent et al., 2002). Uranium-Th
isotope disequilibria change from large 238U excesses to
moderate 230Th excesses at 120–140 km distance from the

arc with the transition being more step-like than gradational
(Fig. 3f). In the southern transect samples, slab-related
fluids lead to significant 238U excesses associated with
elevated H2O contents and the Ba contribution from the
subducting slab (Fig. 3b and 7).
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and d) Nb/Yb versus chondrite normalised (Ce/Yb)N. Chondrite values from McDonough and Sun (1995). Data sources
as in Figure 1 and 2. MORB fields are compiled as averages from the database of Jenner and O’Neill (2012). Red star
marks sediment fluid at 650 °C using partition coefficients from Spandler et al. (2007) and average Tonga pelagic sediment
compositions from DSDP Leg 204 (Plank and Langmuir, 1993, 1998). Blue star are fluid compositions calculated from
altered MORB Castillo et al. (2009) using partition coefficients by Kessel et al. (2005). Yellow star is sediment melt
using sediment compositions from DSDP Leg 204 (Plank and Langmuir, 1993, 1998) at 800 °C (Johnson and Plank,
2000). Violin plots for clarity. Note that some calculated composition exceed the figure scales. Sediment fluid (red
star): Ba/Nb = 7540, Th/Yb = 34, (Ce/Yb)N = 96, Nb/Yb = 1.65, MORB fluid (blue star): Ba/Nb = 280, Th/Yb = 3.5,
(Ce/Yb)N = 23, Nb/Yb = 2.68, sediment melt (yellow star): (Ce/Yb)N = 3.5, Nb/Yb = 1.1.

Samples from the SVFR have the highest H2O contents
ranging from 1.33± 0.14 wt% to 1.58± 0.03 wt% with a
single outlier at 0.43± 0.39 wt%. A few samples are situ-
ated around the H2O solubility curve of Newman and Lowen-
stern (2002) at 49 wt% SiO2 suggesting that these samples
have experienced volatile degassing, however the majority of
our samples here have > 50 wt% SiO2 suggesting that they
have preserved undegassed volatile contents because SiO2-
rich compositions will be dissolving more H2O (Fig. 2d).
The SVFR samples also display the highest percentage of
slab-related Ba contribution (Fig. 7a, details of the calcu-
lations in figure caption) relative to the ELSC. The VFR
transect samples generally display trace element and isotope
signatures that are similar to those of the neighbouring arc.
The H2O and 206Pb/204Pb contents decrease from the VFR
to the northern ELSC samples associated with increasing

Nb/La and (230Th/238U), and excess 230Th at 120–140 km
distance to the arc front (Fig. 3 and 6). Along the ELSC the
fluid-mobile to -immobile trace element ratios are negatively
correlated with increasing distance to the arc front (Fig. 3),
i.e. overlapping with the arc front, Ba/Nb, Th/Nb and
206Pb/204Pb decrease with increasing distance to the north.
Our new H2O data of the transect samples show increasing
values with decreasing distance to the arc from the northern
ELSC to the VFR (Fig. 3). At 100 km distance to the arc
front, the ELSC samples approach MORB-like trace element
and isotope values (Fig. 3 and 5).
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Figure 5. a) Ba/Nb, b) 208Pb/204Pb and c) Ce/Pb versus
206Pb/204Pb. ’Indian’ and ’Pacific’ MORB from Hergt
and Hawkesworth (1994) and Peate et al. (2001). Data
sources as in Figures 1 and 2. Red star marks sediment fluid
at 650 °C using partition coefficients from Spandler et al.
(2007) and average Tonga pelagic sediment compositions
from DSDP Leg 204 (Plank and Langmuir, 1993, 1998).
Blue field are fluid compositions calculated from altered
MORB (Castillo et al., 2009; Hergt and Woodhead, 2007;
Turner and Hawkesworth, 1997) using partition coefficients
by Kessel et al. (2005). Yellow star is sediment melt
using sediment compositions from DSDP Leg 204 (Plank
and Langmuir, 1993, 1998) at 800 °C (Johnson and Plank,
2000).

5 Discussion

For our discussion, we mainly focus on those samples
for which H2O contents and U-series disequilibria were
obtained and that have < 62 wt% SiO2 along with previously
published data that have equivalent data, but we show all
data in the figures (Fig. 2–7). We restrict our discussion
on intermediate and mafic samples defined above to avoid
extensive effects from fractional crystallisation and crustal
assimilation (Heinonen et al., 2021) (Fig. 5); all samples
display 226Ra excess and do not require an age correction
for the (230Th/238U) disequilibria (Fig. 2–7). Note that the
trace element ratios used in this contribution (Fig. 2–7)
are not correlated with fractionation indices (e.g. SiO2)
indicating minor influence from fractional crystallisation.

5.1 Melting and source constraints on samples recovered
across the spreading axis and at the SVFR

Samples from the SVFR transect have the strongest sub-
duction zone signatures amongst the SVFR (e.g. in Ba/Nb,
Th/Nb, 206Pb/204Pb, Fig. 3 and 5) overlapping with com-
position from the Tonga Arc (Escrig et al., 2009). The
variability in incompatible and immobile elements (e.g. in
Nb/La and Nb/Yb; Fig. 3 and 4) indicate the strongest
degree of prior melt depletion at the SVFR (Pearce and
Stern, 2006). Some of the samples with the most elevated
Ba/Nb (225KD and 79DR-01) display the highest Nb con-
centrations of > 1 mg/kg, and elevated Nb/La and Nb/Yb
(> 0.2; Fig. 4d), indicating melting of a source which is
more enriched than normal MORB mantle – likely melting
of sediments from the subducting slab (Fig. 4) (Pearce
and Stern, 2006). In Pb isotope space, and combined
with slab-fluid indicators (e.g. Ba/Nb, Fig. 5), the VFR
samples exhibit a combination of both arc and back-arc
characteristics with ‘Indian’ and ‘Pacific’ MORB mantle
signatures, along with fluid influence derived from the
subducting slab and sediment melts (Baker et al., 2004;
Bézos et al., 2009; Escrig et al., 2009; Fretzdorff et al.,
2006; Haase et al., 2009; Jenner et al., 1987; Peate et al.,
2001). Figure 6d) shows that nearly all of the Pb, Th, U,
and Ba come from the slab in the arc front and VFR magmas
as fluids or melts in different mixing proportions. The ‘Indian’
MORB mantle likely dominates the compositional range
of the mantle wedge, whereas the ‘Pacific’ MORB mantle
compositions dominates the fluid compositions from the
subducting slab; however, Peate et al. (2001) and Hergt
and Woodhead (2007) note that both of these endmembers
are present underneath the back-arc and also mix with an
additional (sedimentary) component from the subducting
slab (Fig. 4). The ‘Pacific’ MORB component is defined by
low (230Th/238U) and 206Pb/204Pb (Fig. 6b) (Elliott, 2004;
Turner and Hawkesworth, 1997), whereas VFR samples
close to the equiline and with high 206Pb/204Pb, Th/Yb,
and (Ce/Yb)N may be a sediment melt (Fig. 4 and 6)
where DTh = DU (Johnson and Plank, 2000) and thus little
fractionation of U and Th will occur during sediment melting
(Fig. 4 and 5). Pearce and Stern (2006) define a deep,
high-temperature sediment melt and a relatively shallower
low temperature fluid (Fig. 5 and 6). The fluids will be
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Figure 7. a) % Ba contribution from the slab and b) % Th contribution from the slab versus distance from the arc front in
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was calculated using Th/Nb ratio of 0.0653 (Jenner and O’Neill, 2012). Data sources as in Figures 1 and 2. Chondrite
values from McDonough and Sun (1995).

defined by relatively higher Ba/Nb and Th/Yb, and even
lower Ce/Pb relative to the high temperature sediment
melts (Fig. 4 and 5). The SVFR samples are geochemically
comparable to ODP site 839 basalts in the Lau Basin
which have been interpreted to reflect < 0.5 % sediment
contribution and degrees of partial melting up to 25 %
(Fretzdorff et al., 2006).

Assuming the highest H2O contents to be ∼ 1.5 wt%
along the VFR from our samples (Fig. 3), the primary
melt composition C0H2O would be ∼ 0.17 wt% (Kimura and
Ariskin, 2014; Portnyagin et al., 2007) comparable to Mari-
ana Trough data (Kelley et al., 2010). The resulting melt
fraction (F) would be 10–15 % combined with excess mantle
wedge temperatures of less than 40 °C (Kelley et al., 2010).
Modelling on-axis sample SO167 74DR-1 from the VFR
(using Arc Basalt Simulator Version 5 of Kimura, 2017)
indicates a 3–5 % depletion of the mantle wedge from prior
melting reducing mantle fertility, e.g. due to slab rollback
(Pearce and Stern, 2006). In addition, ∼ 3 % of the shallow
and deep slab components are added to the mantle wedge
and result in a melt fraction of 10–14 %.

The fluid-mobile nature of U under oxidising conditions
leads to excesses of 238U over 230Th along arcs (Turner
and Hawkesworth, 1997). In addition, the shorter-lived
daughter isotope of 230Th, 226Ra is similarly fluid-mobile to
Ba (Elliott, 2004; Turner et al., 2003) allowing Ra disequi-
libria to track the addition of fluids to the mantle wedge
on timescales < 8 ka (Turner et al., 2001). The preserva-
tion of (230Th/238U) and (226Ra/230Th) disequilibria (Jull
et al., 2002) suggests a low porosity as also supported
by seismic evidence in the region (Forsyth et al., 1998).
Fluid-fluxed melts have commonly been associated with
larger 238U excesses ((230Th/238U) ≪ 0.9) and elevated
(226Ra/230Th) > 4 in zero-age arc lavas (Turner et al.,
2003). Contrastingly, decompression melting of relatively
dry MORB mantle causes (230Th/238U) disequilibria from
> 0.9 to > 1. However, Beier et al. (2010) have shown that
dynamic decompression melting of subduction modified,
oxidised mantle may lead to 238U excesses but leaves the
(226Ra/230Th) disequilibria unaffected. The dynamic mod-
els of U-series disequilibria suggest that the southernmost
spreading axis sample can be reproduced by dynamic melting
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of a mantle source containing a small quantity of slab-related
components (Fig. 6) in line with estimates from the H2O
contents and trace element constraints (Fig. 4, 5, and 6).
Thus, the presence of 238U and 230Th disequilibria does not
require cold, buoyant diapirs or reactive transport (Hall and
Kincaid, 2001; Wu et al., 2020; Zhang et al., 2020).

The two samples with (226Ra/230Th) close to equilibrium
preserve excess in 238U (230Th/238U) < 0.85 together with
elevated fluid-sensitive ratios (e.g. Ba/Nb; Fig. 3), whereas
samples with (230Th/238U) ≥ 0.9 have significant 226Ra
disequilibria > 1.5 indicating that these samples have less
pronounced (230Th/238U) disequilibria but have been subject
to melting within the last 8 ka (Fig. 6). The largest excess
in 226Ra is observed closest to the ridge axis suggesting that
these samples are the youngest or had a larger relative fluid
input. The samples with the highest 226Ra also have the
highest SiO2 contents (59.6 wt%, Fig. 6), indicating that,
in addition to melting, fractionation occurs on timescales
of < 8 ka. At slab depths of 120–150 km along the SVFR
(Hayes et al., 2012), this implies minimal rates of ascent of
15–20 m/a from the subducting slab to eruption which is at
least 150–200 times the rate of spreading in the region 65–
99 mm/a (Taylor et al., 1996). In contrast the signatures
along the northern ELSC reflect simple decompression melts
resulting in slight Th excesses (Fig. 6a).

In the vicinity of the SVFR and the nearby arc, we observe
the preservation of both trace element enriched and depleted
signatures with varying contributions from the subducting
slab (Fig. 3), i.e. at < 55 km distance between the arc
and back-arc, suggesting limited mixing and homogenisa-
tion, although seismic observations indicate a continuous
magma chamber reflector underneath the morphologically
segmented ridge (Sleeper et al., 2016; Wiedicke and Collier,
1993). In addition, the off-axis compositions (Fig. 3) in
the vicinity of the VFR preserve a larger heterogeneity
of trace element compositions suggesting that these may
bypass homogenisation in an axial magma chamber similar to
observations from mid-ocean ridges (Batiza, 1989; Batiza
and Niu, 1992; Brandl et al., 2012). The arc lavas in
the vicinity of the VFR may best be explained by mixing of
depleted mantle with a shallow low-temperature sedimentary
fluid and a sedimentary melt, whereas the back-arc lavas
predominantly reflect mixing of a sediment melt with a
depleted mantle component.

5.2 Changes in melting and source composition along the
back-arc spreading axis

The distance and the nature of the transition between
volatile-rich, fluid-fluxed (Langmuir et al., 2006) and decom-
pression melting (Conder et al., 2002) in back-arcs remains
not well resolved. A gradual versus stepwise transition from
normal MORB to back-arc basin basalts (BABB), depends
on the angle of the subducting slab and the distribution
of hydrous components in the upper mantle (Beier et al.,
2010), and may affect the ridge morphology (Sleeper et al.,
2016). In the northern Lau Basin (Fig. 1), a systematic
decrease of slab-related signatures with increasing depth
of the Benioff Zone is the result of progression from a

slab-related, fluid-fluxed melting regime to decompression
melting (Caulfield et al., 2012). Here, we discuss the
geochemical signatures along the VFR and ELSC, i.e. from
south to north with increasing distance to the arc front, and
a northward increasing depth to slab (Hayes et al., 2012).

Indicators of slab contribution might be anticipated to
systematically vary with distance from the arc – as observed
for the ELSC lavas, but our southernmost transect samples
do not show such correlation. Generally, we observe the
highest H2O contents (∼ 1.5 wt%) closest to the arc and at
Benioff Zone depths < 125 km (Hayes et al., 2012) at which
the slab surface temperature will be < 800°C (van Keken
et al., 2011). The release of H2O from the subducting slab
underneath the Tonga Arc has been estimated to peak at
100–150 km depth (van Keken et al., 2011) in agreement
with our H2O data. Samples further away (> 150 km) from
the arc generally display lower H2O contents (Loock et al.,
1990; Peate et al., 2001).

Considering that Nb is relatively immobile compared to
Ba and Th in the VFR and ELSC lavas, we calculate the
amount of Th and Ba derived from the subducting slab
using the Ba/Nb of MORB as reference. Our calculations in
Figure 7 show that the northern ELSC lavas at 120–140 km
distance have experienced a subtle contribution from the
subducting slab ranging from ∼ 10 % to a maximum of 40–
60 % for Ba and Th while lavas closer to the arc (< 65 km)
consistently reflect > 80 % contribution from the subducting
slab component.

We do not observe a correlation between slab-related
signatures and those sensitive to degrees of partial melting
(e.g. Na8 or (Ce/Yb)N with Ce/Pb) along the ELSC, i.e.
in lavas with increasing distance to the arc. Lavas erupted
at 90–100 km to the arc front display a relatively large
geochemical heterogeneity in Pb isotopes (Fig. 3 and 5) but
relatively little variability in ratios sensitive to prior melt
extraction (e.g. Nb/La, Fig. 3). The change in composition
from slab-related fluids to predominantly decompression
MORB melting occurs in a regional ridge transition zone
(ELSC3 and ELSC4 previously also described by Escrig
et al. (2009) and Jacobs et al. (2007) also associated
with increasing slab depth (Fig. 1) (Hayes et al., 2012)).
The compositional variability in subduction-related indices
suggests a stepwise change, where the sources north of
20.6° S experience a smaller slab contribution (Fig. 3 and 8),
and are increasingly dominated by relatively dry, depleted
MORB sources. The occurrence of relatively high H2O
contents and samples with elevated Ba/Nb relative to
MORB and an increased Ba (20–80 %) and Th (20–60 %)
contribution from the slab at 100 km (Fig. 3 and 7) suggests
that these magmas have experienced some form of slab
contribution likely as a result of mixing along the ELSC in
which these magmas are situated on mixing arrays between
a relatively dry, MORB-like component and the arc-related
hydrous endmember (Fig. 4). Samples from the northern
ELSC display small 230Th excesses (Fig. 6) (Peate et al.,
2001) consistent with decompression melting (Lundstrom,
2003). Low H2O contents and Ba/Nb ratios, less radiogenic
Pb isotope ratios, and a relatively small Ba contribution
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Figure 8. (Previous page) Seismic profiles from Wei et al.
(2015) combined with mantle-normalised, incompatible
trace elements plots for associated samples at the arc front
and back-arc with distance from arc front in km indicated.
Back-arc data for N-ELSC and S-ELSC are from Pearce
et al. (1994).

from the subduction slab in the northern ELSC samples
(Fig. 4, 5 and 7) imply that the slab contribution may be
small in this area.

Thus, magmas along the entire length of the ELSC
suggest that the contribution from the subducting slab
experiences a major decrease at 20.6° S (90–100 km dis-
tance from the arc; Fig. 8). At this distance the depth
of the subducting slab would be > 180 km (Fig. 1) which
could indicate a change towards a downward-directed flow
(Cagnioncle et al., 2007). Using mantle source compositions
and partition coefficients used by Beier et al. (2017b) for
the northern Tongan arc volcanoes, the SVFR lavas can
be modelled by melting of a mantle that has experience
∼ 5 % depletion in the spinel stability field prior to melting
underneath the VFR. The source of the northern ELSC
magmas is estimated to form from ∼ 20–30 % of partial
melting of a source similar to that of normal MORB (Work-
man and Hart, 2005). This is consistent with the changes
in the Pb isotope compositions and Ba/Nb that are close
to MORB for both Pb isotopes and Ba/Nb (Fig. 5) (Jenner
and O’Neill, 2012). The occurrence of diminished slab-
related signatures several 100 km from the active arc could
be explained by melting of remnant subduction components
during slab roll-back (Pearce et al., 1994). Alternatively,
these could be contributions from ancient, rifted arc crust as
indicated by the transition in density clusters in the northern
ELSC (Galley et al., 2024).

5.3 From the arc front to the back-arc: geodynamic
implications from geochemistry

The change from slab-related fluid-fluxed to predominantly
dry decompression melting occurs in a regional ridge transi-
tion zone (Escrig et al., 2009; Sleeper et al., 2016) where
slab depth increases from 160 to 240 km (Fig. 1) (Hayes
et al., 2012) and the morphology of the back-arc spreading
centre changes from a deep, flat, faulted axis at ∼ 100 km
distance from the arc to a volcanic ridge further south
(Sleeper et al., 2016). This change in morphology has also
been associated with the appearance of an axial magma
chamber along the southern ELSC (Escrig et al., 2009;
Jacobs et al., 2007). At this slab depth, fluid migration
paths may also change to downward flow (Cagnioncle et al.,
2007). Our new data suggest that, in the case of the SVFR,
the “dry” (‘MOR-like’) and the “wet” (‘subduction related’)
wings (Langmuir et al., 2006) of the melting regime may
not be easily distinguishable because they are physically
not clearly separated. The similarity of geochemical slab
signatures across the VFR suggests that the mantle is
heterogeneous on the scale of ∼ 10–50 km in this region
involving normal and depleted MORB mantle and various

subducting slab components. We propose that much of
the melting regime is influenced by the relatively slow
rates of spreading of 65–99 mm/a, focusing melts into
the ridge axis (Sleeper et al., 2016; Taylor et al., 1996).
This leads to overlapping melting zones between the arc
and back-arc (Fig. 8) (Wei et al., 2015), in which melts
from the subducting slab are mixed with variably depleted
mantle (Sleeper and Martinez, 2014; Zha et al., 2014; Zhao
et al., 1997), suggesting that back-arcs situated close to
the arc draw subduction-related mantle material into the
spreading axis (Schmid et al., 2020). Alternatively, partial
melts from flux melting are focussed into the back-arc
spreading axis. Geophysical data imply that the separation
of the two melting regimes occurs at a distance of 80–
100 km (Fig. 8) (Wei et al., 2015) – a distance at which
the contribution of the slab components becomes small and
results from along-axis mixing of melts or melting of ancient
subduction components. In addition, this is the distance
at which the depth of the subducting slab exceeds 150 km
(Fig. 1) (Hayes et al., 2012) and in which the contribution
from the subducting slab may be comparatively low due
to downward flow of the slab components. The relatively
sudden separation of the melting regimes and the associated
change in morphology may be the result of changes in
rheological properties due to a smaller contribution from
the subduction slab (Cagnioncle et al., 2007; Hirth and
Kohlstedt, 1996; Sleeper et al., 2016).

We conclude that, at distances of less than 100 km
between the arc and associated back-arc, the widths of the
melting regions are wide enough to be overlapping, produc-
ing geochemical trends that are not representative for the
breakdown of minerals in the subducting slab (Fig. 8). The
separation of the melting regions at distances of > 100 km
between the arc and the back-arc implies that the width of
the melting zone underneath the back-arc may be 50–80 km
at these rates of spreading. This is less than those observed
along fast-spreading mid-ocean ridges where the melting
domain may exceed > 100 km on either side of the ridge
(The MELT Seismic Team, 1998). We interpret this to be
the result of distinct differences in the mantle flow field in
the subduction zone environment (Goldberg and Holt, 2024)
as opposed to a diverging flow field underneath mid-ocean
ridges (Ligi et al., 2008).

6 Conclusion

We do not observe a gradual change in geochemical com-
positions at distances < 100 km between the arc and back-
arc. This suggests that the decompression and fluid-fluxed
melting regimes overlap. The geochemical heterogeneity
may reflect melting of a small-scale heterogenous mantle in
a fluid-flux melting regime. We also show that in the SVFR,
timescales of dehydration, melting, fractionation, and erup-
tion are likely < 8 ka. A stepwise change at distances of
> 100 km between the arc and back-arc, the occurrence of
excess 230Th and prevalent MORB signatures suggests that
melting is due to decompression and that the systematic
decrease in subduction influence observed with increasing
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distance is likely the result of melting of hydrous remnants
during slab rollback. We conclude that at spreading rates
of < 100 mm/a, the width of the melting zone underneath
the spreading axis is 50–80 km to each side. Our model
suggests that back-arcs situated close to the arc may draw
subduction-related mantle material into the spreading axis.
One key observation is that the compositional change
with increasing distance between the arc and back-arc
does not reflect changes in dehydration reaction in the
subducting slab, but rather different proportions of slab
material dragged into the back-arc spreading regime. The
stepwise change at > 100 km distance suggests that the
separation between the fluid-fluxed arc and decompression
back-arc melting domains occurs over relatively short spatial
distances and may be associated with a transitional change in
ridge morphology and slab related change of fluid migration.
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